Pruebas de Laboratorio ASTM

72
1 ESCUELA PROFESIONAL DE INGENIERÍA CIVIL INDICE I. INTRODUCCION:_________________________________________________________________________4 II. OBJETIVOS:_______________________________________________________________________________4 CAPITULO I___________________________________________________________________________________5 CEMENTO______________________________________________________________5 1.1 DEFINICION__________________________________________________________5 EMPAQUE Y ETIQUETADO_____________________________________________________15 CRITERIOS DE ACEPTACIÓN Ó RECHAZO________________________________________16 CEMENTO A LA SALIDA DE FÁBRICA___________________________________________16 TRANSPORTE Y ALMACENAMIENTO DEL CEMENTO__________________________________16 USO DEL CEMENTO EN LA OBRA_______________________________________________17 CAPITULO II_________________________________________________________________________________18 AGUA________________________________________________________________18 2.1 CONCEPTOS GENERALES________________________________________________18 2.2 DEFINICIONES_______________________________________________________19 2.2.1 Agua de mezclado___________________________________________________19 2.3 REQUISITOS DE CALIDAD_____________________________________________20 2.4 UTILIZACIÓN DE AGUAS NO POTABLES_______________________________21 2.5 AGUAS PROHIBIDAS___________________________________________________23 2.6 LIMITACIONES_______________________________________________________23 2.7 AGUA DE MAR_______________________________________________________24 2.8 REQUISITOS DEL COMITÉ 318 DEL ACI_________________________________25 2.9 ALMACENAMIENTO_____________________________________________________27 2.10 MUESTREO___________________________________________________________27 2.11 ENSAYOS____________________________________________________________27 CAPITULO III________________________________________________________________________________28 AGREGADOS___________________________________________________________28 3.1 DEFINICION_________________________________________________________28 3.2 NTP 400.010 /ASTM D75: PRÁCTICA NORMALIZADA PARA LA EXTRACCIÓN Y REPARACIÓN DE MUESTRAS___________________________________________________28 3.2.1 EXTRACION DE MUESTRAS PARA RECONOCIMIENTOS DE YACIMIENTOS_________29 TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM ASIGNATURA: TECNOLOGIA DEL CONCRETO

description

trabajo

Transcript of Pruebas de Laboratorio ASTM

Page 1: Pruebas de Laboratorio ASTM

1

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

INDICE

I. INTRODUCCION:__________________________________________________________________4

II. OBJETIVOS:______________________________________________________________________4

CAPITULO I__________________________________________________________________________5

CEMENTO__________________________________________________________________________51.1 DEFINICION________________________________________________________________________5

EMPAQUE Y ETIQUETADO__________________________________________________________________15

CRITERIOS DE ACEPTACIÓN Ó RECHAZO_______________________________________________________16

CEMENTO A LA SALIDA DE FÁBRICA___________________________________________________________16

TRANSPORTE Y ALMACENAMIENTO DEL CEMENTO______________________________________________16

USO DEL CEMENTO EN LA OBRA_____________________________________________________________17

CAPITULO II_________________________________________________________________________18

AGUA____________________________________________________________________________182.1 CONCEPTOS GENERALES_____________________________________________________________18

2.2 DEFINICIONES_____________________________________________________________________19

2.2.1 Agua de mezclado__________________________________________________________________19

2.3 REQUISITOS DE CALIDAD____________________________________________________________20

2.4 UTILIZACIÓN DE AGUAS NO POTABLES________________________________________________21

2.5 AGUAS PROHIBIDAS_________________________________________________________________23

2.6 LIMITACIONES_____________________________________________________________________23

2.7 AGUA DE MAR_____________________________________________________________________24

2.8 REQUISITOS DEL COMITÉ 318 DEL ACI__________________________________________________25

2.9 ALMACENAMIENTO_________________________________________________________________27

2.10 MUESTREO________________________________________________________________________27

2.11 ENSAYOS_________________________________________________________________________27

CAPITULO III________________________________________________________________________28

AGREGADOS_______________________________________________________________________283.1 DEFINICION_______________________________________________________________________28

3.2 NTP 400.010 /ASTM D75: PRÁCTICA NORMALIZADA PARA LA EXTRACCIÓN Y REPARACIÓN DE

MUESTRAS______________________________________________________________________________28

3.2.1 EXTRACION DE MUESTRAS PARA RECONOCIMIENTOS DE YACIMIENTOS_______________________29

3.2.2 EXTRACCIÓN DE MUESTRAS DE PRODUCCIÓN____________________________________________30

3.2.3 EXTRACCION DE MUESTRAS EN OBRA__________________________________________________30

3.2.4 PREPARACIÓN DE MUESTRAS_________________________________________________________31

3.2.5 REGISTRO_________________________________________________________________________31

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 2: Pruebas de Laboratorio ASTM

2

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

3.3 NTP 400.043 / ASTM C702: PRÁCTICA NORMALIZADA PARA REDUCIR LAS MUESTRAS DE AGREGADO

A TAMAÑO DE ENSAYO_____________________________________________________________________32

3.4 NTP 400.012 / ASTM C136: MÉTODO DE ENSAYO PARA EL ANÁLISIS GRANULOMÉTRICO DEL

AGREGADO FINO, GRUESO Y GLOBAL._________________________________________________________34

3.5 NTP 339.185 / ASTM C566: MÉTODO DE ENSAYO NORMALIZADO PARA CONTENIDO DE HUMEDAD

TOTAL EVAPORABLE DE AGREGADOS POR SECADO.______________________________________________38

3.6 CLASIFICACION_____________________________________________________________________40

3.6.1 AGREGADO FINO___________________________________________________________________40

3.6.2 AGREGADO GRUESO________________________________________________________________40

3.6.2.1. NTP 400.021 / ASTM C127: MÉTODO DE ENSAYO NORMALIZADO PARA PESO ESPECÍFICO Y

ABSORCIÓN DEL AGREGADO GRUESO._________________________________________________________41

CAPITULO IV________________________________________________________________________45

ADITIVOS_________________________________________________________________________454.1 DEFINICION_______________________________________________________________________45

4.2 Razones para el empleo de aditivos____________________________________________________45

4.3 CLASIFICACIÓN DE ADITIVOS SEGÚN LA NORMA TÉCNICA ASTM-C494_________________________46

4.3.1 REDUCTORES DE AGUA ASTM C-494 Tipo A______________________________________________46

4.3.2 RETARDANTES DE FRAGUADO ASTM C-494 Tipo B_________________________________________47

4.3.3 ACELERANTES DE FRAGUADO ASTM C-494 Tipo C_________________________________________47

4.3.4 REDUCTORES DE AGUA RETARDANTES ASTM C-494 Tipo D__________________________________48

4.3.5 REDUCTORES DE AGUA ACELERANTES ASTM C-494 Tipo E__________________________________48

4.3.6 REDUCTORES DE AGUA DE ALTO RANGO ASTM C-494 Tipo F________________________________48

4.3.7 REDUCTORES DE AGUA DE ALTO RANGO RETARDANTES ASTM C-494 Tipo G____________________49

4.4 RAZONES DE EMPLEO DE UN ADITIVO__________________________________________________49

4.4.1 EN EL CONCRETO FRESCO:____________________________________________________________49

4.4.2 EN EL CONCRETO ENDURECIDO:_______________________________________________________49

4.5 MODOS DE USO____________________________________________________________________50

III. REFERENCIAS BIBLIOGRAFICAS:__________________________________________________51

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 3: Pruebas de Laboratorio ASTM

3

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 4: Pruebas de Laboratorio ASTM

4

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

I. INTRODUCCION:

Tras la renovación tecnológica que acomete la industria de las baldosas cerámicas, en los primeros años de la

década de 1980, se inicia un proceso de cambio en la oferta comercial, traducido en incremento progresivo de

la variedad de formatos y en diversidad (técnica y formal) de los productos comercializados.

Pero en la última década del siglo XX se inicia el éxito comercial del gres porcelánico y con él la proliferación

de una amplia gama de baldosas cerámicas caracterizadas por su baja porosidad o capacidad de absorción de

agua (inferior al 0,5 % respecto a la masa de la baldosa seca).

II. OBJETIVOS:

Conocer los materiales de construcción para acabados.

Conocer los distintos tipos de cerámicas mayólicas y losetas.

Conocer las materias primas para su proceso de fabricación de cerámicas mayólicas y losetas.

Conocer los principales procesos de fabricación de cada de los materiales, cerámicas mayólicas y

losetas

Identificar las principales especiaciones técnicas de cada uno de los materiales.

Dar a conocer algunas ventajas y desventajas en el empleo de los materiales cerámicas mayólicas y

losetas en la obra de ingeniería.

CAPITULO I

CEMENTO

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 5: Pruebas de Laboratorio ASTM

5

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

1.1 DEFINICION

Cemento hidráulico producido mediante la pulverización del Clinker (compuesta de cal, alúmina, fierro y sílice)

compuesto esencialmente de silicatos de calcio hidráulico y que contiene generalmente sulfato de calcio y

eventualmente caliza como adicción la molienda. Tiene la propiedad de reaccionar lentamente con el agua

hasta formar una masa endurecida.

Clinker Portland. Producto artificial compuesto principalmente por silicatos de calcio hidráulico cristalizados, el

cual se obtiene por la calcinación de las materias primas, calizas y arcillas, en un proceso controlado, a fin de

que dichos productos formen la composición química y la constitución mineralógica adecuada

1.2 CEMENTO HIDRÁULICO ADICIONADO.

Cemento hidráulico compuesto de dos o más constituyentes inorgánicos, en donde al menos uno de ellos no

es cemento Pórtland ó clinker Pórtland, los cuales combinados ó separados contribuyen al incremento de las

propiedades de resistencia del cemento, con o sin otros componentes, adiciones de proceso o adiciones

funcionales.

1.3 CEMENTO DE ALBAÑILERÍA.

Cemento hidráulico elaborado para uso en morteros para construcción de albañilería o recubrimientos, el cual

contiene un material plastificante y posiblemente otras adiciones reguladoras de desempeño.

1.4 COMPUESTOS QUÍMICOS DEL CEMENTO PORTLAND:

El 90% del peso cemento lo componen los siguientes compuestos químicos:

a. Silicato tricálcico (C3S):

Fase denominada “alita”.

Constituye del 50% al 70% del Clinker.

Se hidrata y endurece rápidamente.

Responsable, en gran parte, del inicio del fraguado.

Aporta resistencia a corto y largo plazo (a mayor Porcentaje de C3S mayor resistencia).

b. Silicato dicálcico (C2S):

Fase denominada “belita”.

Constituye del 15% al 30% del Clinker.

Se hidrata y endurece lentamente.

Contribuye al incremento de la resistencia mayor de 7 días

c. Aluminato tricálcico (C3A):

Constituye aprox. del 5% al 10% del Clinker.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 6: Pruebas de Laboratorio ASTM

6

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Libera una gran cantidad de calor durante los primeros días de hidratación y

endurecimiento.

Contribuye al desarrollo de las resistencias muy tempranas y al fraguado del

cemento.

Vulnerable a la acción de los sulfatos: forman producto expansivo (etringita).

Ferroaluminato tetracálcico (C4AF):

Constituye aprox. del 5% al 15% del Clinker.

Se hidrata con rapidez pero contribuye muy poco a la resistencia.

Su formación reduce la T de clinkerización

d. Sulfato de calcio:

Yeso: CaSO4.2H2O

Anhidrita: CaSO4

Se adiciona al cemento (aprox. 5%), durante su

molienda, para controlar el fraguado:

controla la hidratación del C3A.

Ayuda a controlar la contracción por secado y

puede influenciar la resistencia.

1.5 INFLUENCIA DE LOS COMPUESTOS EN LAS PROPIEDADES DEL CEMENTO

fase Velocidad de

hidratación

Calor de

hidratación

Desarrollo de

resistencia

C3s rápida Alto (120 cal/g) Rápido y

prolongado

C2s Lenta Bajo (62 cal/g) Lento y muy

prolongado

C3A Muy rápida Muy alto (207

cal/g)

Muy rápido y de

corta duración

C4AF Rápida Moderado (100

cal/g)

Lento y poco

significativo

1.6 TIPOS DE CEMENTO PORTLAND

TIPO I:

• De uso general. Que no requieran propiedades especiales para cualquier otro tipo.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 7: Pruebas de Laboratorio ASTM

7

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TIPO II:

• De uso general, especifica. Cuando se desea:

Moderada resistencia a los sulfatos o

Moderado calor de hidratación.

TIPO III:

para ser utilizado cuando se requiere altas resistencia iniciales.

TIPO IV:

para usar cuando se desea bajo calor de hidratación.

TIPO V:

para usar cuando se desea alta resistencia a los sulfatos

1.7 TIPOS DE CEMENTO HIDRÁULICO ADICIONADO.

a. CEMENTO PÓRTLAND CON ESCORIA DE ALTO HORNO (TIPO IS). para uso

general en construcción. Pueden considerarse las opciones Moderada Resistencia a

Sulfatos, Aire Incluido, o Moderado Calor de Hidratación o cualquier combinación de

ellos, adicionando los sufijos (MS), (A), ó (MH) respectivamente.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 8: Pruebas de Laboratorio ASTM

8

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

b. CEMENTO PÓRTLAND PUZOLÁNICO. se definen dos tipos, para cada uno de los cuales pueden

considerarse las opciones Moderada Resistencia a Sulfatos, Aire Incluido, o Moderado Calor de Hidratación

o cualquier combinación de ellos, adicionando los sufijos (MS), (A), ó (MH) respectivamente. El contenido

de puzolana debe oscilar entre 15 y 40% de la masa total del cemento Pórtland puzolánico.

Tipo IP: Cemento Pórtland Puzolánico para uso general en construcción.

Tipo P: Cemento Pórtland Puzolánico para uso general en construcción donde no se requieren altas

resistencias a tempranas edades.

c. CEMENTO DE ESCORIA. Se define un tipo, como sigue:

Tipo S: Cemento de Escoria para utilizarse en combinación con cemento pórtland para la fabricación

de concreto y en combinación con cal hidratada para la fabricación de mortero para mampostería.

Puede considerarse la opción Aire Incluido adicionando el sufijo (A).

El contenido de escoria para este tipo de cemento puede ser mayor al 70% de la masa total del

cemento de escoria.

d. CEMENTO PÓRTLAND MODIFICADO CON PUZOLANA. Se define un tipo, como

sigue:

Tipo I (PM): Cemento Pórtland modificado con puzolana para uso general en construcción. Pueden

considerarse las opciones Moderada Resistencia a Sulfatos, Aire Incluido, o Moderado Calor de

Hidratación o cualquier combinación de ellos, adicionando los sufijos (MS), (A), ó (MH)

respectivamente.

El constituyente de puzolana deberá ser menor al 15% de la masa total del cemento Pórtland

modificado con puzolana.

e. CEMENTO PÓRTLAND MODIFICADO CON ESCORIA.

Se define un tipo, como sigue:

Tipo I (SM): Cemento Pórtland modificado con Escoria para uso general en construcción. Pueden

considerarse las opciones Moderada Resistencia a Sulfatos, Aire Incluido, o Moderado Calor de

Hidratación o cualquier combinación de ellos, adicionando los sufijos (MS), (A), ó (MH)

respectivamente.

El contenido de escoria para este tipo de cemento es menor del 25% de la masa total del cemento

Pórtland modificado con escoria.

1.8 TIPOS DE CEMENTOS HIDRÁULICOS

Para el caso de los Cementos Hidráulicos de la Norma ASTM C 1157, éstos se clasifican de acuerdo a lo

siguiente:

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 9: Pruebas de Laboratorio ASTM

9

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Tipo GU: De uso general en construcción. Se emplean cuando no se requieren condiciones especiales.

Tipo HE: De alta resistencia inicial o temprana.

Tipo MS: De moderada resistencia a los sulfatos.

Tipo HS: De alta resistencia a los sulfatos.

Tipo MH: De moderado calor de hidratación.

Tipo LH: De bajo calor de hidratación.

1.9 TIPOS DE CEMENTOS PARA ALBAÑILERÍA

Los Cementos para Albañilería de la Norma ASTM C 91 se clasifican de acuerdo a lo siguiente:

Tipo N: Para uso en la preparación de morteros Tipo N de la Especificación ASTM C 270, sin mayor adición de

cementos o cal hidratada, y para uso en la preparación de morteros Tipo S ó M de la Especificación ASTM C

270 cuando el cemento es adicionado de acuerdo a los requerimientos de ASTM C 270.

Tipo S: Para uso en la preparación de morteros Tipo S de la Especificación ASTM C 270, sin mayor adición de

cementos o cal hidratada.

Tipo M: Para uso en la preparación de morteros Tipo M de la Especificación ASTM C 270, sin mayor adición

de cementos o cal hidratada.

1.10 REQUISITOS DEL CEMENTO

1. REQUISITOS QUÍMICOS

a) Óxido de magnesio (MgO):

Cristaliza como Periclasa, con incremento de volumen, originando grietas que fisuran al

concreto.

b) Trióxido de azufre (SO3):

Forma equivalente de expresar los sulfatos presentes en el cemento.

C) Pérdida por ignición:

Una elevada pérdida por ignición es índice de la hidratación o carbonatación del

cemento producida por un almacenamiento incorrecto y prolongado.

El envejecimiento del cemento disminuye la resistencia y aumenta los tiempos de

fraguado.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 10: Pruebas de Laboratorio ASTM

10

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

d) Residuo insoluble:

Índice de la transformación de óxidos en compuestos.

Ensayo con el que se puede verificar, de ser el caso, si un cemento Portland ha sido

adulterado

e) Álcalis (Na2O + K2O):

La reacción álcali-agregado se produce entre determinados agregados reactivos y los

álcalis del cemento, formándose un gel que absorbe agua, se dilata y genera presiones

internas que fisuran el concreto.

Los problemas de expansión debidos a la reacción álcaliagregado se pueden evitar o

controlar utilizando:

. Cementos Portland de bajo contenido de álcalis:

Álcalis equivalentes: (Na2O + 0,658 K2O) < 0,60 %

. Cementos Portland adicionados (Opción R).

2. REQUISITOS FÍSICOS

a) Resistencia a la compresión:

Se determina llevando a la rotura especímenes cúbicos de 50 mm de lado, preparados

con mortero consistente de una parte de cemento y 2,75 partes de arena estándar,

dosificados en masa (a/c=0,485).

Los cubos se curan un día en su molde y luego son retirados de su molde e inmersos

en agua de cal hasta su ensayo (3, 7 y 28 días).

b) Tiempo de fraguado:

Fraguado: Condición alcanzada por una pasta, mortero o concreto de cemento cuando

han perdido plasticidad a un grado arbitrario.

Se determina observando la penetración de una aguja en la pasta de cemento

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 11: Pruebas de Laboratorio ASTM

11

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

c) Expansión en autoclave:

Un espécimen prismático (25 mm de sección transversal cuadrada y 250 mm de

longitud), curado 24 horas en cámara húmeda, se coloca en una autoclave, a una T y P

especificadas. Luego se mide la expansión producida.

Determina la posibilidad de una expansión potencial causada por la hidratación tardía

de la CaO libre, o del MgO, o de ambos, presentes en cantidades excesivas en el

cemento Portland.

d) Resistencia a los sulfatos:

El concreto expuesto a concentraciones perjudiciales de sulfatos, debe elaborarse con

cementos resistentes a sulfatos:

• Cementos de moderada resistencia a los sulfatos:

- Cemento Portland Tipo II.

- Cementos Portland adicionado Tipo MS.

• Cementos de alta resistencia a los sulfatos:

- Cemento Portland Tipo V.

- Cemento Portland adicionado Tipo HS.

e) Calor de hidratación:

Calor generado cuando reaccionan el cemento y el agua (hidratación del cemento es

proceso exotérmico).

En estructuras de gran volumen, la rapidez y la cantidad de calor generado son

importantes: crean esfuerzos perjudiciales que fisuran el concreto.

. Los cementos con bajos contenidos de C3A y C3S generan bajo calor de hidratación.

. El incremento de: finura del cemento, contenido de cemento y T de curado aumentan

calor de hidratación

CONTROL DE CALIDAD

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 12: Pruebas de Laboratorio ASTM

12

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Muestreo

Cuando se requiera comprobar que el producto terminado cumple con las especificaciones

establecidas en esta norma, el muestreo del cemento debe realizarse según el método ASTM

C 183, según el Volumen 04 – 01 de la Sección 4 del Manual de Estándares de ASTM, en su

revisión más reciente.

Todo fabricante de cemento establecido en el país debe enviar mensualmente a la Dirección de

Normas de Construcción y Desarrollo Urbano del MTI, un certificado de calidad emitido por un

laboratorio debidamente acreditado, de cada tipo de cemento producido.

Mientras no exista en el país un laboratorio acreditado, la Dirección de Normas de

Construcción y Desarrollo Urbano a su criterio podrá reconocer los resultados emitidos por los

laboratorios de la industria nacional de cemento u otro laboratorio acreditado fuera del país.

.

EMPAQUE Y ETIQUETADO

El cemento debe adquirirse en bolsas de papel kraft u otro material adecuado, ó a granel en

recipientes que preserven sus propiedades químicas y físicas.

Cuando el cemento sea entregado en bolsas, debe cumplirse como mínimo con los siguientes

requisitos:

Las bolsas deben ser resistentes a la acción del cemento.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 13: Pruebas de Laboratorio ASTM

13

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Asegurar la protección del producto contra la acción de agentes externos que puedan alterar

sus características químicas ó físicas.

Garantizar las condiciones de manejo, transporte y almacenamiento apropiados.

Las bolsas deben estar identificadas de la siguiente manera:

a) Nombre y dirección de la fábrica

b) Tipo de cemento

c) Norma de producción

d) Masa contenida en kilogramos

e) Fecha de fabricación (mes y año)

Estos datos deben aparecer en todas y cada una de las bolsas, sin excepción alguna.

CRITERIOS DE ACEPTACIÓN Ó RECHAZO

El cemento podrá rechazarse si no cumple con algún requisito especificado en la presente

norma.

Si después de verificar el cumplimiento de los requisitos especificados, el cemento permanece

almacenado en fábrica, lugares de expendio ó en obras, por un período mayor de tres meses

antes de su empleo, éste puede ser ensayado nuevamente y podrá ser rechazado por el

usuario y/o la Dirección General de Normas de Construcción y Desarrollo Urbano del MTI si no

cumple con algún requisito especificado en la presente norma, cuando se demuestre que no se

han respetado todas las condiciones de almacenamiento establecidas.

CEMENTO A LA SALIDA DE FÁBRICA

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 14: Pruebas de Laboratorio ASTM

14

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

El cemento a la salida de la fábrica, ya sea en bolsa ó a granel, debe estar en tal estado físico

que sus propiedades no sean alteradas durante el traslado y almacenamiento a los centros de

distribución y/o lugares donde será utilizado.

TRANSPORTE Y ALMACENAMIENTO DEL CEMENTO

Cuando el cemento sea transportado a zonas de mucha humedad ó en tiempos de lluvia, éste

debe ser adecuadamente protegido para evitar contacto con el agua.

El cemento en bolsas debe almacenarse alejado de la humedad en un lugar cerrado,

manteniéndolo a 15 cm sobre el suelo y separado de la pared, previniendo su deterioro ó la

introducción de materiales extraños.

Las estibas deben tener como máximo 12 bolsas una sobre otra.

El cemento a granel debe ser almacenado en recipientes que garanticen la preservación de sus

propiedades químicas y físicas.

En bodega, la primera bolsa de cemento en entrar al lugar de almacenamiento será la primera

en salir, con el objetivo de garantizar la rotación del producto.

USO DEL CEMENTO EN LA OBRA

El cemento que se haya dañado por exposición a la humedad y que tenga terrones ó esté

endurecido no debe usarse en la obra.

No se deben utilizar varias marcas ó tipos de cemento en un mismo proceso de mezclado, ni

en un mismo elemento estructural

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 15: Pruebas de Laboratorio ASTM

15

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

CAPITULO II

AGUA

1.11 CONCEPTOS GENERALES

Debido a que el agua ocupa un papel predominante en las reacciones del cemento durante el estado plástico,

el proceso de fraguado y el estado endurecido de un concreto, la presente sección pretende dar una visión

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 16: Pruebas de Laboratorio ASTM

16

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

generalizada acerca de las características que debe tener desde un punto de vista de la tecnología del

concreto.

1.12 DEFINICIONES

1.12.1 Agua de mezclado

Es definida como la cantidad de agua por volumen unitario de concreto.

1.12.2 Agua de hidratación

Es aquella parte del agua original de mezclado que reacciona químicamente con el cemento para

pasar a formar parte de la fase sólida del gel, es también conocida como agua no evaporable.

1.12.3 Agua evaporable

El agua restante que existe en la pasta, es agua que puede evaporarse, pero no se encuentra libre En

su totalidad. El gel cemento cuya característica principal es un enorme desarrollo superficial interno,

ejerce atracción molecular sobre una parte del agua evaporable y la mantiene atraída.

1.12.4 Agua de adsorción

Es una capa molecular de agua que se halla fuertemente adherida a las superficies del gel pro fuerzas

intermoleculares de atracción.

1.12.5 Agua capilar

Es el agua que ocupa los poros capilares de la pasta, a distancias que suelen estar comprendidas en

el intervalo de 30 a 10 A, de manera que parte de ella está sujeta débilmente a la influencia de las

fuerzas de superficie del gel.

1.12.6 Agua libre

Es la que se encuentra fuera de la influencia de las fuerzas de superficie, de tal modo que tiene

completa movilidad y puede evaporarse con facilidad.

El agua presente en la mezcla del concreto reacciona químicamente con el material cementante para

lograr:

a. la formación del gel.

b. permitir que el conjunto de masa adquiera las propiedades que:

En estado endurecido faciliten una adecuada manipulación y colocación de la misma.

En el estado endurecido la convierta en un producto de las propiedades y características

deseadas.

Como requisito de carácter general y sin que ello implique la realización de ensayos que

permitan verificar su calidad, se podrá emplear como aguas de mesclado aquellas que se

consideren potables, o las que por experiencia se conozca que pueden utilizadas en la

preparación del concreto.

Debe recordarse que no todas que son adecuadas para beber son convenientes para el

mezclado del concreto y que, igualmente, no todas las aguas inadecuadas para beber son

inconvenientes para preparar el concreto. En general, dentro de las limitaciones que en las

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 17: Pruebas de Laboratorio ASTM

17

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

diferentes secciones se han de dar, el agua de mezclado deberá libre de sustancias

colorantes, aceites y azúcares.

Adicionalmente, el agua empleada no deberá contener sustancias que pueden producir

efectos desfavorables sobre el fraguado, la resistencia o la durabilidad, apariencia del

concreto, o sobre los elementos metálicos embebidos en este.

Previamente a su empleo, será necesario investigar y asegurarse de la fuente de provisión

no está sometida a influencias que modificar su composición y características con respecto a

las conocidas que permitieron su empleo con resultados satisfactorios.

Efectos del agua en el concreto

1.13 REQUISITOS DE CALIDAD

El agua a ser empleada en la preparación de la mezcla debe cumplir con la Norma NTP 339.088 y ser de

preferencia potable.

No existen criterios uniformes en cuando a los límites permisibles para las sales y sustancias presentes

en el agua que va de emplearse. A continuación se presenta, en partes por millón, los valores aceptados

como máximos para el agua utilizado en el concreto.

Cloruros: Máx. 300 ppm

Sulfatos: Máx. 300 ppm

Sales de Magnesio: Máx. 125 ppm

Sale solubles totales: Máx. 500 ppm

PH: Mayor de 7

Sólidos en suspensión: Máx. 500 ppm

Materia orgánica expresada en oxígeno: Máx. 10 ppm

La Norma Peruana NTP 339 088 considera aptas para la preparación y curado del concreto, aquellas

aguas cuyas propiedades y contenidos de sustancias disueltas están comprendidas dentro de los

siguientes límites.

El contenido de materia orgánica, < 3 mg/l (3 ppm).

El contenido de residuo sólido < 5 g/l (5000 ppm).

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 18: Pruebas de Laboratorio ASTM

18

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

El pH estará comprendido entre 5,5 y 8

El contenido de sulfatos, (ion SO4) < 0,6 g/l

El contenido de cloruros, (ion Cl) < 1 g/l (1000 ppm).

El contenido de carbonatos y bicarbonatos alcalinos (alcalinidad) (NaHCO3) < 1 g/l (1000 ppm).

Si la variación de color es una característica que se desea controlar, el contenido de fierro, expresado en ion

férrico, será de una parte por millón (1 ppm).

El agua deberá estar libre de azúcares y agregados o sus derivados. Igualmente lo estará de sales de

potasio o de sodio.

Si se utiliza aguas no potables, la calidad del agua, determinada por análisis de laboratorio, deberá ser

aprobada por la supervisión.

La selección delas proporciones de la mezcla de concreto se basará en resultados en los que se ha

utilizado en la preparación del concreto agua de la fuente elegida.

1.14 UTILIZACIÓN DE AGUAS NO POTABLES

Se podrán realizar ensayos comparativos empleando en un caso el agua en estudio y en otra agua destilada o

potable, Dichos ensayos consistirán en la determinación del tiempo de fraguado del cemento y resistencia a

compresión del mortero a las edades de 7 días y 28 días.

Agua no potable

El tiempo de fraguado no es necesariamente un ensayo satisfactorio para establecer la calidad del agua

empleada ni los efectos de la misma sobre el concreto endurecido. Sin embargo, la NTP 339.084 acepta

que los tiempos de fraguado inicial y final de la pasta preparada con el agua en estudio podrán ser hasta

25% mayores o menores, respectivamente, que los correspondientes a las que contiene aguas de

referencia.

Los morteros preparados con el agua en estudio y ensayados de acuerdo a las recomendaciones de la

Norma ASTM C 109 deben dar, a los 7 y 28 días, resistencias a la compresión no menores de 90% de las

muestras similares preparadas con agua potable.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 19: Pruebas de Laboratorio ASTM

19

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Es recomendable continuar los estudios a edades posteriores para certificar que no se presentan

reducciones de la resistencia.

Cuando la concentración de sales, especialmente cloruros, exceda los límites indicados en estas

recomendaciones, se efectuaran ensayos de resistencia a la compresión a edades de 180 y 365 días.

No se permitirá en concretos pre reforzados el empleo de aguas que superan los límites de sales

especificados.

Ni el olor ni el sabor son índices de la calidad del agua. Tampoco lo son los resultados de los

resultados de estabilidad de volumen.

Podrá utilizarse, previa autorización de la supervisión, aguas no potables si, además de cumplir los

requisitos anteriores se tiene que:

a. Las impurezas presentes en el agua no alteran el tiempo de fraguado, la resistencia, durabilidad,

o estabilidad de volumen de concreto, ni causan eflorescencias, ni procesos corrosivos en el

acero de refuerzo.

b. El agua es limpia libre de cantidades perjudiciales de aceites, ácidos, álcalis, sales, materia

orgánica, o sustancias que pueden ser dañinas ala concreto, acero de refuerzo, acabados o

elementos embebidos.

c. L selección de las proporciones de la mezcla se basará en los resultados de ensayos de

resistencia en compresión de concretos en cuya preparación se ha utilizado agua de fuente

elegida.

Sobre la base de lo indicado en los acápites anteriores se ha determinado que algunas aguas

aparentemente inconvenientes no dan necesariamente un efecto dañino en el concreto. De acuerdo a los

criterios expresados y previa realización de los ensayos correspondientes, las siguientes aguas podrían

ser utilizadas en la preparación del concreto.

a. Aguas de pantano y ciénaga, siempre que la tubería de toma este instalada de manera tal que

queden por lo menos 60 cm de agua por debajo de ella, debiendo estar la rejilla en una entrada

o dispositivo que impida el paso de pasto, raíces, fango, barro o materia sólida.

b. Agua de arroyos y lagos.

c. Aguas con concentración máxima de 0.1% de SO4.

d. Agua de mar, dentro de las limitaciones que en la sección correspondiente se indican.

e. Aguas alcalinas con un porcentaje máximo de 0.15% de sulfatos o cloruros.

1.15 AGUAS PROHIBIDAS

Está prohibido emplear en la preparación del concreto:

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 20: Pruebas de Laboratorio ASTM

20

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

a. Aguas acidas.

b. Aguas calcáreas, minerales; carbonatadas; o naturales.

c. Aguas provenientes de minas o relaves.

d. Aguas que contengan residuos industriales.

e. Aguas con un contenido de cloruro de sodio mayor del 3%, o un contenido de sulfato mayor del

1%.

f. Aguas que contengan algas; materia orgánica; humus; partículas de carbón, turba; azufre; o

descargas de desagües.

g. Aguas que contengan ácido húmico u otros ácidos orgánicos.

h. Aguas que contengan azúcares o sus derivados.

i. Aguas con porcentajes significativos de sales de sodio o potasio disueltos, en especial en todos

aquellos casos en que es posible la reacción álcali agregado.

1.16 LIMITACIONES

Las sales u otras sustancias dañinas que pueden estar presentes en los agregados y/o aditivos,

deberán sumarse a la cantidad que pudiera aportar el agua de mezclado a fin de evaluar el total de

sustancias inconvenientes que pueden ser dañinas al concreto, el acero de refuerzo, o los elementos

metálicos embebidos.

El agua empleada en la preparación del concreto para elementos reforzados, o en concretos que

tengan embebidos elementos de aluminio o de fierro galvanizado, incluyendo la Proción del agua de

mezcla con la que contribuyen la humedad del agregado o las soluciones de aditivos, no deberá

contener cantidades de ion cloruro mayores del 0.6% en peso del cemento.

La suma total de las cantidades de ion cloruro presentes en el agua, agregados y aditivos, no deberá

nunca exceder, expresada en porcentajes en peso del cemento, de los porcentajes indicados a

continuación.

Concreto pre

reforzado………………………………………………………………………………...0.06%

Concreto armado que tengan elementos de aluminio o fierro galvanizado

embebidos…………………………………………………………………………………………..…..0.06%

Concreto armado expuesto a la acción de cloruros……………………………………….…....0.10%

Concreto armado no protegido que puede estar sometido a un ambiente húmedo pero no

expuesto a cloruros……………………………………………………………………………….

…..0.15%

Concreto armado que deberá estar seco o protegido de la humedad durante su vida por

medio de un recubrimiento impermeable………………..………………………………………..0.80%

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 21: Pruebas de Laboratorio ASTM

21

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

1.17 AGUA DE MAR

En algunos casos muy excepcionales puede ser necesario utilizar agua de mar en la preparación del

concreto. En estos casos debe conocerse el contenido de sales solubles, así como para una misma

concentración los efectos difieren si hay un contacto duradero, con renovación o no del agresivo, o si se

trata de una infiltración.

Debe recordarse que mucho menor intensidad tiene el ataque del agua de mar al concreto si se trata

de un contacto sin renovación ya que el agente activo se agota y su acción se modifica por la presencia

de nuevos productos formados por la reacción, caso en que la reacción tiende a anularse.

Agua de mar

El agua de mar solo podrá utilizarse como agua de mezclado en la preparación del concreto con

autorización previa escrita del Proyectista y la Supervisión, la misma que debe figurar en el cuaderno de

obras. Está prohibido su uso en los siguientes casos:

Concreto pre reforzado.

Concretos cuya resistencia a la compresión a los 28dias sea mayor de 175kg/cm2.

Concretos con elementos embebidos de fierro galvanizado o de aluminio.

Concretos preparados con cementos de alto contenido de óxido de alúmina; o con un

contenido de C3A mayor de 5%.

Concretos con acabado superficial d importancia.

Concretos expuestos o concretos cara vista.

Concretos masivos.

Concretos colocados en climas cálidos.

Concretos con agregados reactivos.

Concretos en los que se utiliza cementos aluminosos.

En la utilización del agua de mar como agua de mezclado sebe recordar que:

a. No hay evidencias de falla de estructuras de concreto simple preparadas con agua de mar.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 22: Pruebas de Laboratorio ASTM

22

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

b. La utilización de agua de mar en la preparación del concreto no produce variación en el

asentamiento, obteniéndose para cualquier dosificación la misma trabajabilidad que se empleando

agua potable.

c. Puede presentarse una aceleración en el fraguado y endurecimiento inicial de la mezcla.

d. La resistencia a la tracción y compresión en morteros preparados, es mayor durante los primeros

días, en relación de los morteros preparados con agua potable.

e. Su empleo disminuye su resistencia a la compresión a los 28 días aproximadamente en un 12%. A

los tres días pueden presentarse valores del 124% al 137%, tendiendo la resistencia a igualarse a

los siete días a la de los concretos preparados con agua potable.

f. A partir de los siete días la resistencia de los concretos preparados con agua de mar tiende a

disminuir, obteniéndose a los 28 días una resistencia a la tracción del 93% y a la compresión del

orden del 94%, respecto a los concretos preparados con agua potable.

g. El efecto de empleo del agua de mar como agua de mezclado sobre la resistencia final del

concreto, puede compensarse diseñando la mezcla para una resistencia promedio del 110% de

aquella que se desea alcanzar a los 28 días.

h. La presencia de agua de mar puede provocar corrosión del acero de refuerzo y elementos

metálicos embebidos por lo que el recubrimiento de estos debe ser no menor de 70mm.

i. El concreto debe ser bien compactado, buscando la máxima densidad y la menor porosidad a fin

de impedir reacciones de las sales existentes, asegurando una durabilidad aceptable y satisfactoria.

j. La utilización de agua de mar como agua de mezclado permite, al incrementar las resistencias

iniciales y favorecer el endurecimeinto rápido del concreto, undesenconfrado o una puesta en

servicio más rápido.

k. Pueden provocar eflorescencias.

Si el agua de mar de mar se emplea como agua de mezclado es recomendable que el cemento tenga un

contenido máximo del 5% de aluminato tricálcico y la mezcla tenga un contenido mínimo de cemento de

350kg/m3; una relación de agua- cemento máxima de 0.5, consistencia plástica; y un recubrimiento de acero

de refuerzo no menor de 70mm.

Se debe tener cuidado, cuando se usa agua de mar para la mezcla, de asegura una densidad muy alta

lográndola con un concreto bien compactado, para un contenido bajo pero que permita una adecuada

trabajabiliadad.

Finalmente cabe indicar que ciertas especificaciones y códigos no permiten su empleo, y otyras la restringen.

En lamayoría no se hace mención a sus efectos.

1.18 REQUISITOS DEL COMITÉ 318 DEL ACI

El agua empleada en el mezclado del concreto deberá estar limpia y libre de cantidades peligrosas de

aceites, álcalis, ácidos, sales, materia orgánica, u otras sustancias peligrosas para concreto o el refuerzo.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 23: Pruebas de Laboratorio ASTM

23

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

El agua de mezclado para concreto premezclado o para concreto que deberá contener elementos de

aluminio embebidos, incluida la porción del agua de mezclado que es contribuida en forma de agua libre

sobre el agregado, no deberá contener cantidades peligrosas de ion cloruro.

Agua potable

No deberá emplearse en las concretas aguas no potables, salvo que las siguientes condiciones sean

satisfechas:

La selección de las proporciones del concreto deberá basarse en mezclas de concreto en las

que se ha empleado agua de la misma fuente.

Los cubos de ensayo de morteros preparados con aguas de mezclado no potables deberán

tener a los 7 y 28 días resistencias iguales a por lo menos el 90% de la resistencia de

especímenes similares preparados con agua potable. Los ensayos de comparación deberán

ser preparadas con morteros, idénticos con excepción del agua de mezclado, preparados y

ensayados de acuerdo con la norma ASTM C 109.

Estas recomendaciones del Comité ACI 318, merecen del mismo las siguientes observaciones:

Casi todas las aguas naturales que son bebibles y que no tiene olor o sabor pronunciados,

son satisfactorias para ser empleadas como aguas de mezclado en la preparación del

concreto. Las impurezas, cuando son excesivas pueden afectar no solo el tiempo de fraguado,

la resistencia del concreto y estabilidad del volumen, cambios de longitud sino también

pueden casar eflorescencias o corrosión del esfuerzo. Cuando ello sea posible, las aguas con

altas concentraciones de sólidos disueltos deberán ser evitadas.

Las sales u otras sustancias peligrosas, con las que contribuyen los agregados o aditivos,

deben ser añadidas al volumen que puede ser contenido en el agua de mezclado. Estos

volúmenes adicionales deben ser consideradas en la evaluación de la aceptación de las

impurezas totales que pueden ser peligrosas para el concreto o acero.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 24: Pruebas de Laboratorio ASTM

24

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

1.19 ALMACENAMIENTO

El agua a emplearse en la preparación del concreto se almacenará, de preferencia, en tanques metálicos

o silos. Se tomarán precauciones que eviten su contaminación. No es recomendable almacenar el agua de

mar en tanques metálicos.

1.20 MUESTREO

El muestreo del agua de mezclado se efectuará de acuerdo con lo indicado en la Norma NTP 339 070 o

ASTM D75. Se tendrá en consideración que:

a. La supervisión determinara la frecuencia de la toma de muestras.

b. Las muestras remitidas al laboratorio serán representativas del agua tal como será empleada. Se

deberá tener presente que una sola muestra de agua puede no ser representativa si existen

variaciones de composición en función del tiempo como consecuencia de las variaciones

climáticas u otros motivos.

c. Si se duda de la representatividad de la muestra, se tomarán muestras periódicas a distintas

edades y días o, eventualmente, a la misma hora en distintos lugares. Igualmente cuando se

presume que puede haber variado la composición del agua.

d. Cada muestra tendrá un volumen mínimo de cinco litros. Las muestras se envasaran en

recipientes cilíndricos de plástico o de vidrio incoloro, perfectamente limpios. El cierre será

hermético. Los recipientes serán adecuadamente embalados y acondicionados para evitar su

rotura.

1.21 ENSAYOS

El agua se ensayara de acuerdo a lo indicado en la Norma NTP 339. 088. Iniciado el proceso de

construcción no son necesarios nuevos ensayos a intervalos regulares salvo que:

a. Las fuentes de suministro sean susceptibles de experimentar variaciones apreciables entre la

estación seca y la húmeda.

b. Exista la posibilidad que el agua de la fuente de abastecimiento pueda haber sido contaminada

con un volumen excesivo de materiales en suspensión debida a una crecida normal.

c. El flujo de agua disminuya al punto que la concentración de sales o materia orgánica en el agua

pueda ser excesiva.

El agua no debe contener sustancias que puedan producir efectos desfavorables sobre el fraguado, la

resistencia o durabilidad, apariencia del concreto, o sobre elementos metálicos embebidos en este.

El agua a ser empleada en la preparación de la mezcla debe cumplir con la Norma NTP 339.088

Debido a que el agua ocupa un papel predominante en las reacciones del cemento durante el estado plástico,

el proceso de fraguado y el estado endurecido de un concreto, la presente sección pretende dar una visión

generalizada acerca de las características que debe tener desde un punto de vista de la tecnología del

concreto.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 25: Pruebas de Laboratorio ASTM

25

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

CAPITULO III

AGREGADOS

1.22 DEFINICION

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 26: Pruebas de Laboratorio ASTM

26

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

1.23 NTP 400.010 /ASTM D75: PRÁCTICA NORMALIZADA PARA LA EXTRACCIÓN Y

REPARACIÓN DE MUESTRAS

Este método de ensayo establece los procedimientos para extraer y preparar las muestras representativas de

agregados finos, gruesos e integrales para fines de ensayo. Se aplicará a los agregados naturales y triturados.

Muestras del yacimiento

Muestra representativa de agregados en su sitio de depósito natural, no sometido a tratamiento alguno.

Muestra de producción

Muestra representativa de agregados removido de su depósito natural y sometido a cualquier tratamiento como

trituración, lavado o clasificación y que se encuentra sobre cintas transportadoras, o almacenado junto al lugar

de extracción o tratamiento.

Muestra de obra

Muestra representativa de agregados que se encuentra en una obra, ya sea sobre vehículos o almacenado.

Equipos Y Materiales

Las herramientas y accesorios mínimos necesarios para las operaciones de muestreo incluyen pala, bolsas o

sacos, cajas o recipientes y otros que sean necesarios considerar para los procedimientos que se establecen

en el presente método.

EXTRACCION Y PREPARACION DE LA MUESTRA

Aspectos generales

Dado que el muestreo es tan importante como los ensayos mismos, el muestreador debe tomar todas las

precauciones necesarias para obtener muestras que sean representativas del material que se va a analizar.

Para ello, personal debidamente experimentado debe inspeccionar el material por muestrear en superficie o a

través de pozos de prueba o sondajes, según corresponda, a fin de determinar su homogeneidad con un

adecuado nivel de confiabilidad.

Tamaño de la muestra

a) Muestra de terreno.

La cantidad de muestra tomada en terreno debe ser tal que represente la naturaleza y condición de los

agregados. Redúzcala por cuarteo según método ASTM C702 hasta obtener una cantidad de al menos el

doble de la requerida como muestra de laboratorio, conservando el material restante de la reducción como

contramuestra ante cualquier eventualidad.

b) Muestra de laboratorio.

La cantidad de muestra necesaria para ser enviada al laboratorio depende del tipo y número de ensayos a los

cuales será sometido el material. Generalmente las cantidades mínimas requeridas para los ensayos básicos

de calidad son las siguientes:

- Agregado fino: 30 kg.

- Agregados gruesos: Una cantidad en Kg equivalente a 2 veces el tamaño máximo absoluto de los áridos

grueso, expresado este último en mm.

- Agregado integral: En este caso se cumplirá simultáneamente con las cantidades mínimas requeridas para

los distintos tipos de áridos antes mencionados.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 27: Pruebas de Laboratorio ASTM

27

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

1.23.1 EXTRACION DE MUESTRAS PARA RECONOCIMIENTOS DE YACIMIENTOS

Procedimientos de extracción

a) Yacimiento con frente descubierto. Inspeccione la(s) cara(s) del yacimiento, para determinar

variaciones importantes o existencia de estratos. Extraiga muestras por fajas verticales del frente de

explotación, de acuerdo con la homogeneidad del material, la forma de explotación y la facilidad de

acceso. Registre el ancho de la faja, la profundidad horizontal y las cotas verticales de extracción de

muestras si ello es procedente, además registre las diferencias observables en el color y la estructura.

b) Yacimiento sin frente descubierto. Extraiga muestras representativas de los diferentes estratos,

identificados en cada pozo de prueba o sondaje, tomando tres o más porciones de cada uno de ellos.

Registre la profundidad relativa de extracción de la muestra y el espesor del (de los) estrato (s).

Frecuencia de muestreo

a) En yacimientos con frente descubierto, extraiga muestras de fajas verticales ubicadas a distancias

inferiores a 30 m.

b) En yacimientos sin frente descubierto, ejecute al menos un pozo de prueba o sondeo cada 5.000

m2, uniformemente distribuidos y cubriendo el área de estudio.

1.23.2 EXTRACCIÓN DE MUESTRAS DE PRODUCCIÓN

De preferencia las muestras de material procesado se extraerán de cintas transportadoras. Si esto no

es aplicable, se extraerán muestras desde silos, tolvas o depósitos, o bien desde acopios.

Procedimientos de extracción

a) Cintas transportadoras. Detenga la cinta a intervalos regulares de tiempo y extraiga porciones de

agregados, que correspondan a todo material comprendido entre dos secciones transversales a la

cinta, distanciadas en aproximadamente 1 m. Extraiga tres o más porciones de áridos hasta completar

la muestra.

b) Silos, tolvas o depósitos. Extraiga porciones de áridos en el flujo de la descarga sin incluir el primer

y último 10% de ésta. Tome tres o más porciones de material hasta completar la muestra. Emplee, en

lo posible, un recipiente que abarque todo el flujo del material.

c) Acopios. Utilizando un cargador frontal, extraiga porciones de áridos en distintos niveles y

ubicaciones rodeando el acopio, evitando sacar material de las zonas inferior y superior de éste.

Con las porciones extraídas forme un pequeño acopio debidamente homogeneizado, aplanando su

parte superior. Desde éste extraiga manualmente las porciones necesarias para conformar la

muestra.

Frecuencia de muestreo

Adopte como frecuencia mínima de muestreo la correspondiente al menor volumen indicado en los

siguientes puntos:

a) Extraiga una muestra cada 1.000 m3 de cada tipo de áridos producido.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 28: Pruebas de Laboratorio ASTM

28

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

b) Extraiga una muestra correspondiente al volumen de cada tipo de áridos producido en un mes

1.23.3 EXTRACCION DE MUESTRAS EN OBRA

Las muestras se extraerán desde vehículos o desde el material almacenado. Establezca un control de

calidad durante la recepción del material y disponga los acopios según las diferencias que se

observen.

Procedimientos de extracción

a) Vehículos. Extraiga porciones de áridos en tres o más puntos, profundizando aproximadamente

hasta la mitad de la altura de la carga o a intervalos regulares de tiempo durante la descarga.

b) Silos, tolvas o depósitos. Proceda de acuerdo con 9 b).

c) Acopios. Proceda de acuerdo con 9 c).

Frecuencia de muestreo

a) Control de recepción

Extraiga al menos una muestra de cada tipo de áridos por cada 500 m3 recepcionados.

b) Extraiga una muestra cada vez que se cambie de fuente de abastecimiento o se aprecien cambios

de calidad del material.

c) Control para el uso

Extraiga una o más muestras de cada tipo de pétreo por cada 250 m3 por emplear.

Extraiga una muestra cada vez que se aprecien cambios de calidad del material, debido a tiempo

prolongado de almacenamiento en obra, contaminaciones, segregaciones, etc.

El profesional a cargo podrá disminuir la frecuencia mínima establecida hasta en un 50%, cuando se

verifique que no hay cambios significativos en las características del material.

1.23.4 PREPARACIÓN DE MUESTRAS

Mezclado

Mezcle con pala, sobre una superficie horizontal y limpia, las porciones de agregados obtenidas del

muestreo hasta obtener una muestra homogénea, asegurando la incorporación de todas las partículas

más finas que la componen. Si se requiere determinar el grado de variabilidad de un acopio, las

porciones extraídas de las distintas zonas de éste no deben mezclarse entre sí.

Reducción

Reduzca por cuarteo según Método ASTM C702 el tamaño de la muestra extraída, para obtener el

tamaño de muestra de laboratorio especificado en 6 b).

Transporte a laboratorio

Transporte las muestras en bolsas, cajas o recipientes confeccionados de tal manera de evitar

pérdidas de material. Identifíquelas claramente, de acuerdo a lo indicado en “Registro”, con marcas

indelebles protegidas de cualquier eventual deterioro.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 29: Pruebas de Laboratorio ASTM

29

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

1.23.5 REGISTRO

Cada muestra para laboratorio llevará un registro en que se indicarán los siguientes datos:

Información mínima.

a) Nombre del contrato y contratista.

b) Identificación del muestreador (nombre, entidad y/o laboratorio).

c) Tipo de material.

d) Procedencia del material.

e) Tamaño aproximado de la muestra (kg/m3).

f) Cantidad de material que representa la muestra (m3).

g) Procedimiento de extracción utilizado.

h) Empleo propuesto.

i) Ensayos requeridos.

j) Fecha de extracción.

Información Optativa

a) Ubicación y nombre del yacimiento, depósito, planta de manufacturado u obra.

b) Capacidad de producción o consumo diario estimado.

c) Procedimientos de explotación y/o manufacturado.

d) Radio de alcance (zona que abastece).

e) Cualquier información específica relativa a las características del agregado o a los requisitos de

empleo.

1.24 NTP 400.043 / ASTM C702: PRÁCTICA NORMALIZADA PARA REDUCIR LAS

MUESTRAS DE AGREGADO A TAMAÑO DE ENSAYO

Los diferentes tipos y tamaños de agregados requieren que la muestra sea representativa para los varios

ensayos a los que será sometida. El material obtenido en terreno debe ser siempre mayor que la cantidad de la

muestra requerida para el ensayo.

El material debe ser reducido en cantidad de acuerdo al ensayo que se le va a practicar. Este método

establece dos procedimientos, uno manual y otro mecánico, para la reducción de muestras de suelos y

agregados en general. Los mejores resultados se obtienen usando un cuarteador metálico de un tamaño

adecuado.

PROCEDIMIENTO MANUAL

A continuación se describe un método para reducir la cantidad del material, cuarteándola manualmente, para

obtener muestras menores que 100 kg.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 30: Pruebas de Laboratorio ASTM

30

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

a) Para llevar a cabo el cuarteo, el material debe estar húmedo; si está seco, humedézcalo añadiendo agua

limpia con un rociador. Mezcle bien el material hasta formar una pila en forma de cono; revuelva de nuevo

hasta formar un nuevo cono; repita esta operación tres veces.

b) Distribuya una palada llena del material tan uniformemente como sea posible sobre una lona u otra

superficie lisa, plana y ancha. Una lona de 150 x 150 cm. será suficiente. Cuando la cantidad del material es

pequeña, se puede usar una plana de albañil.

Continúe colocando material en capas, una sobre la otra, hasta que se haya distribuido todo el material

formando un montón plano y ancho, cuyo espesor y distribución de los tamaños de áridos sea razonablemente

uniforme. No permita la conicidad de áridos.

c) Divida el montón en cuatro partes iguales, con una pala de borde recto o una plancha de metal.

Cuando emplee una lona, el cuarteo puede hacerse convenientemente insertando un palo delgado o varilla por

debajo de la lona y levantándola para así dividir la muestra en partes iguales, primero en dos mitades iguales y

luego en cuartas partes.

d) Remueva dos cuartas partes opuestas y colóquelas a un lado, cuidando de retirar todo el material fino

limpiando los espacios despejados con una brocha o escoba.

e) Repita el procedimiento indicado desde a) a d) con la porción restante de áridos, hasta que obtenga una

muestra de ensayo del tamaño deseado.

f) Si lo desea, puede guardar la porción que colocó a un lado para luego hacer un posible ensayo de

comprobación.

Cuando emplee una lona, el cuarteo puede hacerse convenientemente insertando un palo delgado o varilla por

debajo de la lona y levantándola para así dividir la muestra en partes iguales, primero en dos mitades iguales y

luego en cuartas partes.

PROCEDIMIENTO CON CUATEADOR METALICO O MECANICO

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 31: Pruebas de Laboratorio ASTM

31

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

El método para reducir a muestras menores que 100 kg mediante un cuarteador metálico es el siguiente:

a) Coloque la muestra en uno de los recipientes del cuarteador.

b) Vacíe la muestra en el cuarteador.

c) Separe el material correspondiente a uno de los recipientes.

d) Repita el procedimiento con el material del recipiente restante hasta obtener el tamaño de muestra

requerido.

1.25 NTP 400.012 / ASTM C136: MÉTODO DE ENSAYO PARA EL ANÁLISIS

GRANULOMÉTRICO DEL AGREGADO FINO, GRUESO Y GLOBAL.

Este método establece el procedimiento para tamizar y determinar la granulometría de los agregados. Es

aplicable a los agregados que se emplean en la elaboración de morteros, hormigones, tratamientos

superficiales y mezclas asfálticas.

DEFINICIONES

Granulometría

Distribución porcentual en masa de los distintos tamaños de partículas que constituyen un árido.

Porcentaje parcial retenido en un tamiz

Porcentaje en masa correspondiente a la fracción directamente retenida en un determinado tamiz.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 32: Pruebas de Laboratorio ASTM

32

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Porcentaje acumulado retenido en un tamiz

Porcentaje en masa de todas las partículas de mayor tamaño que la abertura de un determinado tamiz. Se

calcula como la suma del porcentaje parcial retenido en ese tamiz, más todos los porcentajes parciales

retenidos en los tamices de mayor abertura.

Porcentaje acumulado que pasa por un tamiz

Porcentaje en masa de todas las partículas de menor tamaño que la abertura de un determinado tamiz. Se

calcula como la diferencia entre el 100% y el porcentaje acumulado retenido en ese tamiz.

EQUIPOS Y MATERIALES

Balanza

Debe tener una capacidad superior a la masa de la muestra más el recipiente de pesaje y una precisión de 0,1

g.

Tamices

a) Son tejidos, de metal y abertura cuadrada, y sus tamaños nominales de abertura pertenecen a las series

que se indican en la Tabla 3-1, esta serie de tamaños numerales esta normada por IBNORCA.

TABLA 3-1

b) Los marcos de los tamices deben ser metálicos y suficientemente rígidos y firmes para fijar y ajustar las

telas de alambre, a fin de evitar pérdidas de material durante el tamizado y alteraciones en la abertura de las

mallas. Deben ser circulares, con diámetros de 200 mm y 300 mm, preferentemente para los gruesos.

c) Cada juego de tamices debe contar con un depósito que ajuste perfectamente, para la recepción del residuo

más fino.

d) Cada juego de tamices debe contar con una tapa que ajuste perfectamente para evitar pérdidas de material.

Horno

Provisto de circulación de aire y temperatura regulable para las condiciones del ensayo.

Herramientas y accesorios

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 33: Pruebas de Laboratorio ASTM

33

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Espátulas, brochas, recipientes para secado, recipientes para pesaje, etc.

EXTRACCIÓN Y PREPARACIÓN DE LA MUESTRA

Extracción de muestras

Extraiga y prepare las muestras de acuerdo con los Métodos ASTM C75 y ASTM C702.

Acondicionamiento de la muestra de ensayo

a) Homogenice cuidadosamente el total de la muestra de laboratorio en estado húmedo y redúzcala por

cuarteo, de acuerdo con el Método ASTM C702 hasta que obtenga, cuando esté seca, un tamaño de muestra

ligeramente superior a los valores que se indican en el punto “Tamaño de la muestra de ensayo”.

b) No se debe reducir la muestra de laboratorio en estado seco, ni tampoco reducirla a una masa exacta

predeterminada.

c) Seque la muestra hasta masa constante en horno a una temperatura de 110 ± 5° C.

Tamaño de la muestra de ensayo

Para los áridos gruesos.

a) Cuando se emplean tamices de 300 mm de diámetro, la muestra de ensayo en estado seco debe tener una

masa ligeramente superior a los valores que se indican en Tabla 3-2.

TABLA 3-2

b) Cuando una muestra contenga una fracción de agregado fino superior al 15%, el material debe separarse

por el tamiz de 4,75 mm o 2,36 mm, según corresponda a hormigón o asfalto, respectivamente, debiéndose

determinar y registrar el porcentaje en masa de ambas fracciones. Trate las fracciones de agregado fino y

agregado grueso de acuerdo con 9 y 10, respectivamente.

c) Los tamaños de muestra indicados en la Tabla 3-2 podrán aumentarse proporcionalmente cuando se

empleen tamices de mayor tamaño, siempre que se cumpla lo que establece el 10 d).

d) La masa máxima de la muestra debe ser tal que la fracción retenida en cualquiera de los tamices al terminar

la operación de tamizado pueda distribuirse en una sola capa sobre la malla de tejido de alambre.

PROCEDIMIENTO

Preparación de tamices

Seleccione un juego de tamices de acuerdo con la especificación correspondiente al material por ensayar.

Dispóngalos según aberturas decrecientes, montados sobre el depósito receptor y provisto de su tapa. Todos

estos elementos deben estar limpios y secos. Verifique los tamaños de abertura de las mallas, a lo menos una

vez cada seis meses.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 34: Pruebas de Laboratorio ASTM

34

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Tamizado

Efectúelo en dos etapas:

a) Un tamizado inicial que puede ser manual o mecánico

b) Un tamizado final que debe ser manual

Tamizado inicial

a) Determine la masa de la muestra de ensayo en estado seco, registre aproximando a 1 g para áridos finos y

a 10 g para áridos gruesos; vacíela sobre el tamiz superior y cubra con la tapa.

b) Agite el conjunto de tamices por un período suficiente para aproximarse a la condición que se establece en

14 g).

Tamizado final

a) Retire el primer tamiz, provisto de depósito y tapa.

b) Sosténgalo de un costado con una mano, manteniéndolo ligeramente inclinado.

c) Golpee firmemente el costado libre hacia arriba con la palma de la otra mano a un ritmo de 150 golpes/min.

d) Gire el tamiz cada 25 golpes en 1/6 de vuelta.

e) Al completar cada ciclo de 150 golpes, pese separadamente el material retenido sobre el tamiz y el material

que pasa, recogido en el depósito.

f) Traslade el material que pasa en cada ciclo al tamiz siguiente.

g) Repita el ciclo en el mismo tamiz con el material retenido hasta que se recoja en el depósito una masa

inferior al 1% de la masa retenida, con lo cual dé por terminado el tamizado de esa fracción.

h) Retire el tamiz siguiente provisto de depósito y tapa para efectuar con dicho tamiz los ciclos necesarios, y

así sucesivamente hasta completar todos los tamices.

Determinación de la Masa

Determine la masa final del material retenido en cada tamiz y del material que pasa por el tamiz de menor

abertura, recogido en el depósito. Registre con la aproximación que sea mayor entre 1 g y 0,1% de la pesada.

CÁLCULOS

Sume y registre la masa total (100%) de las fracciones retenidas en todos los tamices y en el depósito

receptor. Esta suma no debe diferir de la masa inicial registrada en 13, en más de 3% para los áridos finos y de

0,5% para los agregados gruesos.

Cuando no se cumpla con lo especificado en 16, rechace el ensayo y efectúe otro con una muestra gemela.

Calcule el porcentaje parcial retenido en cada tamiz, referido a la masa total de las fracciones retenidas,

aproximando al 1%.

Exprese la granulometría como porcentaje acumulado que pasa, indicando como primer resultado el del menor

tamiz en que pasa el 100% y como último resultado, el del primer tamiz en que el porcentaje sea 0%.

Adicionalmente la granulometría se puede expresar de acuerdo con cualquiera de las siguientes formas:

a) Como porcentaje acumulado retenido, indicando como primer resultado el del menor tamiz en que queda

retenido un porcentaje igual a 0%, y como último resultado el del primer tamiz en que el porcentaje acumulado

retenido sea 100%.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 35: Pruebas de Laboratorio ASTM

35

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

b) Como porcentaje parcial retenido.

EXPRESIÓN GRÁFICA

La expresión gráfica de la granulometría de los áridos, se debe hacer en un sistema de coordenadas

ortogonales, cuya abscisa, a escala logarítmica, indica las aberturas nominales y cuya ordenada, a escala

lineal, indica los valores de la granulometría en las formas señaladas.

1.26 NTP 339.185 / ASTM C566: MÉTODO DE ENSAYO NORMALIZADO PARA CONTENIDO

DE HUMEDAD TOTAL EVAPORABLE DE AGREGADOS POR SECADO.

Este método se aplica para determinar, por secado, el porcentaje de humedad evaporable, en una muestra de

agregados.

USO Y SIGNIFICADO

1. Este método es suficientemente exacto para propósitos normales, tales como el reajuste del peso de

bachadas, durante la preparación de mezclas de concreto. Generalmente, con él se mide la humedad en la

muestra de ensayo, lo más confiablemente que puede hacerse, para representar un suministro de agregados.

2. En raras ocasiones, cuando el agregado mismo es afectado por la acción del calor, o cuando se necesitan

medidas más refinadas, este ensayo puede no ser aplicable, o requerir modificaciones.

3. En el caso de agregados gruesos, las partículas más grandes, especialmente las mayores de 50 mm (2"),

requerirán de tiempos más prolongados para que el agua viaje del interior de la partícula hasta la superficie. El

usuario del método deberá determinar por tanteos, si existen formas más rápidas y confiables para ejecutar

este ensayo, con las partículas grandes.

EQUIPOS Y MATERIALES

1).Una balanza o báscula exacta, legible y con precisión dentro del 0,1% de la carga de ensayo, en cualquier

punto del intervalo de utilización. Dentro de cualquier intervalo igual al 10% de la capacidad del aparato de

pesaje, la indicación del peso será exacta dentro del 0,1%, para las diferentes pesadas.

2).Horno ventilado capaz de mantener la temperatura alrededor de la muestra, en 110 ± 5°C (230 ± 9°F).

3).Recipientes para muestras, que no se afecten por el calor; de un tamaño suficiente para contener la

muestra, sin peligro de derramamiento, y con una forma tal, que el espesor de la muestra depositada, no

exceda de un quinto de la menor dimensión lateral.

4). Agitador, cuchara metálica o espátula, de tamaño adecuado.

EXTRACCIÓN Y PREPARACIÓN DE LA MUESTRA

Muestreo

El muestreo se hará generalmente de acuerdo a lo establecido en losMétodos ASTM C75 y ASTM C702.

Características de la muestra

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 36: Pruebas de Laboratorio ASTM

36

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Obténgase una muestra representativa de áridos, con el contenido de agua que tiene, cuando se reciba de la

fuente de suministro que está siendo ensayada, y que en el caso de áridos con peso normal, tengan el tamaño

indicado en la Tabla 3-4.

TABLA 3-4: Tamaño De Muestras De Áridos Con Peso Normal

a) Basado en tamices de malla cuadrada.

b) Para determinar el peso mínimo de muestras de áridos livianos, multiplíquese el valor señalado, por la

disminución aproximada de peso unitario seco en kg/m3 y divídase por 1600.

PROCEDIMIENTO

1. Pésese la muestra con precisión del 0,1%, evitando pérdidas de humedad, por posibles demoras.

2. Séquese enteramente la muestra en el recipiente, utilizando el horno, cuidando mucho que no se pierdan

partículas de áridos. Un calentamiento demasiado rápido, puede ocasionar la explosión de algunas partículas,

con la pérdida consecuente.

La muestra estará enteramente seca, cuando un calentamiento posterior cause menos del 0,1% de pérdida de

peso.

3. Pésese la muestra seca con precisión del 0,1%, después de que se ha enfriado suficientemente, para no

dañar la balanza.

CÁLCULOS

1. Calcúlese el contenido total de agua como sigue:

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 37: Pruebas de Laboratorio ASTM

37

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

2. La humedad superficial es igual a la diferencia entre el contenido total de agua y la absorción, con todos los

valores basados, en el peso seco. La absorción puede determinarse a partir de los ensayos ASTM C128, para

áridos finos y ASTM C127, para áridos gruesos.

PRECISIÓN Y EXACTITUD

No hay datos suficientes para establecer un planteamiento sobre precisión y exactitud. Puesto que cualquier

tamaño de muestra que supere las cantidades mínimas de la Tabla H0107-1 es admitido, se cree que no es

posible establecer un planteamiento prefijado.

Puede desarrollarse, para cada aplicación particular de este método de ensayo, un señalamiento de precisión

asociado con el tamaño real de la muestra y el equipo utilizado, (1) haciendo ensayos duplicados sobre

porciones iguales de la misma muestra; (2) tomando muestras duplicadas, representativas del mismo árido.

También, se podrían sacar datos de precisión de los procedimientos aplicados, añadiendo una cantidad

conocida de agua, al árido seco, cuidando que no se pierda agua antes del ensayo.

1.27 CLASIFICACION

1.27.1 AGREGADO FINO

1.27.2 AGREGADO GRUESO

Se define como Agregado Grueso al material proveniente de la desintegración natural o artificial,

retenido en el tamiz 4,75 mm (No 4) y que cumple con los límites establecidos en la Norma N.T.P.

400.012 ó ASTM C 33.

La piedra que es de grano duro y compacto, debe estar limpia de polvo, barro u otra sustancia de

carácter deletéreo.

Normalmente es el 50% al 65% por masa o volumen total del agregado.

1.27.2.1. NTP 400.021 / ASTM C127: MÉTODO DE ENSAYO NORMALIZADO PARA

PESO ESPECÍFICO Y ABSORCIÓN DEL AGREGADO GRUESO.

Este método establece los procedimientos para determinar la densidad real, la densidad neta y la

absorción de agua en agregados gruesos.

Es aplicable a los agregados gruesos que se emplean en el análisis de suelos, elaboración de

hormigones y obras asfálticas.

DEFINICIONES

1. Áridos grueso

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 38: Pruebas de Laboratorio ASTM

38

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Material árido retenido en el tamiz de 4,75 mm (Nº 4) en el caso de suelos y concretos, y en el tamiz

de 2,36 mm (Nº 8) cuando se utiliza en asfaltos.

2. Huecos

Espacios vacíos entre las partículas de un material árido.

3. Poros

Espacios vacíos interiores de una partícula de material árido.

a) Poro accesible: poro permeable o abierto.

b) Poro inaccesible: poro impermeable o cerrado.

4. Densidad (ρ)

Es la tasa entre la masa (m) y el volumen (v) de un material agregado a una temperatura especificada.

Se expresa en kg/m3.

a) Densidad real (ρR). Densidad en que se considera el volumen macizo de las partículas de material

agregado, más el volumen de los poros accesibles e inaccesibles de esas partículas.

a. Densidad real de áridos seco (ρRS). Densidad real en que se considera solamente la masa de

agregados seco

b. Densidad real de agregados saturado superficialmente seco (ρRT). Densidad real en que se

considera la masa de agregados seco más la masa del agua que llena los poros accesibles.

b) Densidad neta (ρN). Densidad en que se considera el volumen macizo de las partículas de material

árido más el volumen de los poros inaccesibles.

5. Absorción de agua (α)

Masa de agua necesaria para llevar un material árido del estado seco al estado saturado

superficialmente seco. Se expresa como porcentaje referido a la masa de áridos seco.

6. agregado seco

Material secado en horno hasta masa constante. Esta condición se obtiene cuando dos pesadas

sucesivas, separadas por 1 h de secado a 110 ± 5º C (230 ± 10ºF), difieren en un porcentaje igual o

inferior al 0,1 % de la menor masa determinada

EQUIPOS Y MATERIALES

1. Balanza

De capacidad superior a la masa del canastillo portamuestra más la masa de la muestra de ensayo y

una precisión mínima de 1 g.

2. Horno

Con circulación de aire y temperatura regulable para las condiciones del ensayo.

3. Canastillo porta muestra

De alambre de acero inoxidable lo suficientemente resistente para soportar el peso de la muestra, con

malla de abertura igual o inferior que 2 mm y de capacidad igual o superior a 4l.

Además, debe estar provisto de un dispositivo que permita suspenderlo del platillo de la balanza.

4. Estanque

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 39: Pruebas de Laboratorio ASTM

39

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Impermeable, inoxidable, de forma y capacidad tal, que permita contener totalmente y con holgura el

canastillo porta muestra, de acuerdo con el procedimiento especificado en este método.

5. Recipientes

Deben estar limpios, de material resistente, estancos y de capacidad suficiente para contener la

muestra de ensayo.

EXTRACCIÓN Y PREPARACIÓN DE MUESTRAS

Extracción de muestras

Extraiga y prepare las muestras de acuerdo con los Métodos ASTM C75 y ASTM C702.

Tamaño de la muestra de ensayo

La cantidad mínima de muestra para el ensayo se determina según la Tabla 3-6 en función del

tamaño máximo nominal del agregado.

TABLA 3-6 CANTIDAD MÍNIMA DE MUESTRA SEGÚN TAMAÑO MÁXIMO NOMINAL DEL ÁRIDO

Preparación de la muestra de ensayo

a) Puede emplear el material proveniente del ensayo de tamizado, debidamente homogeneizado.

b) Elimine por tamizado las partículas inferiores a 4,75mm (Nº 4), en el caso de concretos y suelos y

las partículas inferiores a 2,36mm (Nº 8), en el caso de asfaltos.

c) Lave la muestra hasta remover el polvo superficial o cualquier materia extraña adherida a las

partículas.

d) Seque la muestra hasta masa constante en un horno a 110 ±5ºC (230 ±10ºF).

e) Enfríe la muestra al aire a temperatura ambiente por un período de 24 ± 4 h.

f) Sumerja la muestra en agua a temperatura ambiente por un período de 24 ± 4 h.

Nota 1: Se debe tener presente que existen agregados cuya saturación no se completa en 24 h. En

ese caso es necesario continuar el control de absorción hasta que dos pesadas sucesivas, separadas

por una hora de inmersión, difieran en un porcentaje igual o inferior que el 0,1 % de la menor masa

determinada.

PROCEDIMIENTO

Efectúe las siguientes pesadas a la muestra de ensayo:

Pesada al aire ambiente del pétreo saturado superficialmente seco

a) Retire la muestra del agua y seque superficialmente las partículas, haciéndolas rodar sobre un

paño absorbente húmedo hasta que desaparezca la película visible de agua adherida. Seque

individualmente las partículas mayores manteniendo el agregado, ya secado superficialmente,

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 40: Pruebas de Laboratorio ASTM

40

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

cubierto por un paño húmedo hasta el momento de pesar. Efectúe toda la operación en el menor

tiempo posible.

b) Determine inmediatamente la masa de agregados saturado superficialmente seco, por pesada al

aire ambiente, aproximando a 1 g. Registre su valor como MSSS.

Pesada sumergida

a) Coloque la muestra inmediatamente en el canastillo portamuestra.

b) Sumerja el canastillo en agua a 20 ± 3º C (68 ± 5º F), por un período de al menos 3 min.

c) Determine la masa sumergida, aproximando a 1 g. Registre su valor como MSUM.

Nota 2: Mantenga el canastillo y su contenido totalmente sumergidos durante la operación. Debe

procurarse que el elemento de suspensión del canastillo tenga la menor dimensión posible, a fin de

minimizar su efecto sobre los resultados.

Pesada al aire ambiente de agregados seco

a) Retire la muestra del canastillo y vacíela completamente del recipiente, cuidando de no dejar

partículas atrapadas.

b) Seque la muestra hasta masa constante en horno a una temperatura de 110 ± 5º C (230±10º F).

c) Enfríe la muestra hasta temperatura ambiente, en lo posible dentro de un recipiente protegido, para

evitar la absorción de humedad del aire.

d) Determine la masa de la muestra seca, por pesada al aire ambiente, aproximando a 1 g. Registre

su valor como MS.

CÁLCULOS

Densidad Real (ρR ).

a) Densidad real de los agregados saturados superficialmente secos (ρRT). Calcule la densidad real

de agregados saturado superficialmente seco según la fórmula siguiente, aproximando a 1 kg/m3

b) Densidad real de agregados seco (ρRS). Calcule la densidad real de áridos seco según la fórmula

siguiente, aproximando a 1 Kg/m3:

Densidad neta (PN)

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 41: Pruebas de Laboratorio ASTM

41

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Calcule la densidad neta según la fórmula siguiente, aproximado a 1 kg/m3:

Absorción de Agua

Calcule la absorción de agua según la fórmula siguiente, aproximando a la centésima en porcentaje.

Expresión de Resultados

a) Determine la densidad real, la densidad neta y la absorción de agua de un agregado, como el

promedio aritmético de dos ensayos sobre muestras gemelas.

b) Exprese las densidades en kg/m3, aproximando a 1 kg/m3. Exprese la absorción en porcentaje,

aproximando a la centésima.

PRECISIÓN

Acepte la determinación de densidad real, densidad neta y absorción de agua de los agregados

gruesos, cuando la diferencia entre los valores obtenidos de los dos ensayos realizados por uno o

más laboratoristas, sea:

a) Igual o inferior que 20 kg/m3 en la determinación de densidades.

b) Igual o inferior que 3 décimas porcentuales en la determinación de la absorción de agua.

INFORME

El informe debe incluir lo siguiente:

a) Nombre del contrato y contratista.

b) Identificación y procedencia de la muestra.

c) Fecha de muestreo.

d) Resultado del ensayo.

e) Fecha de ensayo.

f) Cualquier otra información específica relativa al ensayo o al árido analizado.

g) Referencia a este método.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 42: Pruebas de Laboratorio ASTM

42

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

CAPITULO IV

ADITIVOS

1.28 DEFINICION

Un aditivo es definido, tanto por el Comité 116R del American Concrete Institute, como por la Norma ASTM C

494, como:

“un material que no siendo agua, agregado, cemento hidráulico, o fibra de refuerzo, es empleado como un

ingrediente del mortero o concreto, y es añadido a la tanda inmediatamente antes o durante su mezclado”.

Para complementar la definición anterior, tal vez cabría añadir que los aditivos para concreto se utilizan con el

propósito fundamental de modificar convenientemente el comportamiento del concreto en estado fresco, y/o de

inducir o mejorar determinadas propiedades deseables en el concreto endurecido.

1.29 Razones para el empleo de aditivos

Entre las principales razones de empleo de aditivos para modificar las propiedades del concreto, tenemos:

aumentar la trabajabilidad, sin modificar el contenido de agua.

retardar o acelerar el tiempo de fraguado inicial.

acelerar el desarrollo de la resistencia en la primera etapa.

modificar la velocidad de producción de calor de hidratación

reducir la exudación y sangrado.

Incrementar la durabilidad o resistencia en condiciones severas de exposición.

Reducir la permeabilidad a los líquidos.

Disminuir la segregación.

Reducir la contracción.

Incrementar la adherencia del concreto viejo y nuevo.

Mejorar la adherencia del concreto con el refuerzo de acero.

1.30 CLASIFICACIÓN DE ADITIVOS SEGÚN LA NORMA TÉCNICA ASTM-C494

Debido a que sus efectos son muy variados, una clasificación así es muy extensa, además debido a que un solo

aditivo modifica varias características del concreto, además de no cumplir todas las que especifica. Según la

norma técnica ASTM-C494 es:

a. TIPO A: Reductor de agua

b. TIPO B: Retardante

c. TIPO C: Acelerante

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 43: Pruebas de Laboratorio ASTM

43

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

d. TIPO D: Reductor de agua retardante

e. TIPO E: Reductor de agua acelerante

f. TIPO F: Súper reductor de agua

g. TIPO G: Súper reductor de agua retardante

1.30.1 REDUCTORES DE AGUA ASTM C-494 Tipo A

“Aditivo químico plastificante reductor de agua”, no es tóxico y es libre de cloruros. Es un aditivo

líquido plastificante de fraguado normal para el hormigón reductor de agua, incorporador de

resistencias a todas las edades. Reduce el agua de amasado hasta un 15%.

Usos.-

Es usado para satisfacer las necesidades en la industria del hormigón premezclado y en la

elaboración de hormigones en grandes obras donde el retardo de fraguado no sea requerido.

Ventajas.-

No altera los tiempos de fraguados.

Mejora la colocación de hormigones bombeables.

Reduce las presiones en las líneas de bombeo por su poder plastificante.

Permite obtener hormigones más fluidos.

Mejora el acabado en hormigones vistos.

Ayuda a mantener hormigones impermeables.

Modo de empleo.-

Para uso de hormigón premezclado agregar el aditivo directamente al agua de amasado.

Para lograr una mejor trabajabilidad en obra, adicionar el aditivo en el camión mezclador o en la

concretera, teniendo en cuenta el tiempo de agitación que debe de ser mínimo de 4 minutos.

En muchos casos es aconsejable llevar a cabo ensayos en obra para establecer el porcentaje del

aditivo que es necesaria para obtener la plasticidad requerida.

Dosificación.-

Se lo dosificará del 0.5% al 1.0% por peso del cemento, o lo que es lo mismo de 250cc a 500cc por

saco de 50 kg de cemento. La dosificación varía dependiendo al grado de trabajabilidad que desea

adquirir.

1.30.2 RETARDANTES DE FRAGUADO ASTM C-494 Tipo B

Es un aditivo líquido plastificante retardante especialmente diseñado para hormigones elaborados en

clima cálido, mejora las cualidades de los hormigones por ser reductor de agua hasta un 15%.

Usos.-

Como plastificante, adicionado a una mezcla de consistencia normal se consigue incrementar su

asentamiento, sin tener que adicionar más agua. El aditivo extiende el tiempo de manejabilidad de la

mezcla, facilitando el transporte, la colocación y el vibrado del hormigón.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 44: Pruebas de Laboratorio ASTM

44

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Como reductor de agua, adicionado en el agua de amasado, permite una reducción de agua,

consiguiendo así un incremento de resistencia a la compresión en todas las edades, mejorando

también la impermeabilidad y durabilidad del hormigón.

Ventajas.-

Facilita el transporte, bombeo y compactación del hormigón a distancias.

Aumenta la trabajabilidad e incrementa la resistencia a todas las edades.

No contiene cloruros.

Ayuda al revibrado.

Se obtiene hormigones más impermeables.

Modo de empleo.-

Agregar al agua de amasado en forma manual o por medio de un dosificador.

En muchos casos es aconsejable llevar a cabo ensayos en obra para establecer exactamente los

grados de retardo y fluidez.

Dosificación.-

Se lo dosificará del 0.45% al 1.0% por peso del cemento o lo que es lo mismo de 220cc a 500cc por

saco de 50 kg de cemento. La dosis óptima debe determinarse mediante ensayos, con los materiales

y condiciones de la obra.

1.30.3 ACELERANTES DE FRAGUADO ASTM C-494 Tipo C

Es un aditivo líquido acelerante plastificante listo para usarse, produce resistencias tempranas altas.

Usos.-

Se lo recomienda para los siguientes casos:

Para acelerar los tiempos de fraguado iniciales.

Para acelerar la ganancia de resistencia inicial del hormigón.

Para garantizar el normal endurecimiento del hormigón sometido a bajas temperaturas.

Cuando se desee reducir los tiempos de desencofrado en plantas de prefabricados.

Para la elaboración y despacho de hormigón premezclado en ciudades de climas medios, y

fríos.

1.30.4 REDUCTORES DE AGUA RETARDANTES ASTM C-494 Tipo D

Es un aditivo líquido plastificante retardante especialmente diseñado para hormigones elaborados en

clima cálido, obteniendo una trabajabilidad dada, y logrando así hormigones menos segregables con

retardo de fraguado controlado.

Usos.-

FLUDEX-ROAD puede ser usado en cualquier tipo de hormigón siendo especialmente recomendable

su uso en hormigones donde se requiera mayores resistencias, durabilidad e impermeabilidad.

Puede ser usado en hormigones simples o armados.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 45: Pruebas de Laboratorio ASTM

45

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

1.30.5 REDUCTORES DE AGUA ACELERANTES ASTM C-494 Tipo E

Es un aditivo líquido acelerante y plastificante listo para usarse en elementos de hormigón,

produciendo resistencias tempranas altas.

Usos.-

Para acelerar los tiempos de fraguado iniciales.

Para acelerar la ganancia de resistencia inicial del hormigón.

Para garantizar el normal endurecimiento del hormigón sometido a bajas temperaturas.

Cuando se desee reducir los tiempos de desencofrado en plantas de prefabricados.

Para la elaboración y despacho de hormigón premezclado en ciudades de climas medios, y

fríos.

1.30.6 REDUCTORES DE AGUA DE ALTO RANGO ASTM C-494 Tipo F

Es un aditivo líquido, reductor de agua de alto poder, plastificante, y acelerante de resistencia que

puede economizar hasta un 20 % de cemento.

Usos.-

Es recomendado para fabricar hormigones de características de fraguado normal, con alta plasticidad

y desarrollo rápido de resistencias.

Tiene 3 características básicas:

Como reductor de agua de alto rango y acelerante.- Dosificándolo en el agua de amasado permite

reducir de acuerdo con la dosis hasta un 25 % del agua total de mezcla, consiguiendo la misma

trabajabilidad, y por lo tanto un incremento notable en las resistencias a todas la edades.

Como economizador de cemento.- Se puede aprovechar la reducción de agua para disminuir el

contenido de cemento por metro cúbico, sin alterar la trabajabilidad inicial y hacer así más económica

la mezcla del hormigón.

Como supe plastificante.- Adicionándolo a una mezcla de consistencia normal se consigue fluidificar

el concreto o mortero facilitando su colocación y su bombeabilidad en elementos esbeltos

densamente armados y en la construcción de estructuras civiles prefabricadas. Permite recuperar el

asentamiento del concreto premezclado sin alterar sus tiempos de fraguado ante demoras de

colocación del mismo.

1.30.7 REDUCTORES DE AGUA DE ALTO RANGO RETARDANTES ASTM C-494 Tipo

G

Es un aditivo líquido, reductor de agua de alto poder, (hasta un 30%) economizador de cemento, no

contiene cloruros.

Usos.-

PLASTIDEX-R es recomendado para fabricar hormigones completamente plásticos, en climas cálidos

y es el aditivo ideal para prefabricados y estructuras donde se requiere resistencias altas a temprana

edad sin que la estructura este expuesta al ataque de cloruros.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 46: Pruebas de Laboratorio ASTM

46

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Como reductor de agua de alto rango.- Dosificándolo en el agua de amasado permite reducir de

acuerdo con la dosis hasta un 30 % del agua total de mezcla, consiguiendo la misma trabajabilidad, y

por lo tanto un incremento notable en las resistencias a todas la edades.

Como economizador de cemento.- Se puede aprovechar la reducción de agua para disminuir el

contenido de cemento por metro cúbico, sin alterar la trabajabilidad inicial y hacer así más económica

la mezcla del hormigón.

1.31 RAZONES DE EMPLEO DE UN ADITIVO

Algunas de las razones para el empleo de un aditivo son:

1.31.1 EN EL CONCRETO FRESCO:

Incrementar la trabajabilidad sin aumentar el contenido de agua.

Disminuir el contenido de agua sin modificar su trabajabilidad.

Reducir o prevenir asentamientos de la mezcla.

Crear una ligera expansión.

Modificar la velocidad y/o el volumen de exudación.

Reducir la segregación.

Facilitar el bombeo.

Reducir la velocidad de pérdida de asentamiento.

1.31.2 EN EL CONCRETO ENDURECIDO:

Disminuir el calor de hidratación.

Desarrollo inicial de resistencia.

Incrementar las resistencias mecánicas del concreto.

Incrementar la durabilidad del concreto.

Disminuir el flujo capilar del agua.

Disminuir la permeabilidad de los líquidos.

Mejorar la adherencia concreto-acero de refuerzo.

Mejorar la resistencia al impacto y la abrasión.

1.32 MODOS DE USO

Los aditivos se dosifican hasta en un 5% del peso de la mezcla y comúnmente son usados entre el 0.1 % y 0.5

% del peso del cemento. La utilización de aditivos no debería, con toda objetividad ser subestimada o

menospreciada. El efecto deseado y su uso lo describen los propios fabricantes pero algunos son desconocidos

incluso por ellos, por lo que es importante que antes de su uso se realicen pruebas a fin de constatar las

propiedades del material. El uso del aditivo debe incluirse en el diseño de mezcla de concreto.

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 47: Pruebas de Laboratorio ASTM

47

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

III. REFERENCIAS BIBLIOGRAFICAS:

Fuentes: *Conferencia inicial del Seminario "Aditivos y Adiciones en el Concreto- organizado por el Capítulo

de Ingenieros Civiles, Asocem e Indecopi. Facultad de Ingeniería Civil de la Universidad Nacional de

Ingeniería - Perú Universidad Católica del Norte - Chile

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO

Page 48: Pruebas de Laboratorio ASTM

48

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TRABAJO DE INVESTIGACIÓN: PRUEBAS DE LABORATORIO SEGÚN NORMAS ASTM

ASIGNATURA: TECNOLOGIA DEL CONCRETO