QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005...

37
Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 44 QUÍMICA SUPRAMOLECULAR José Vázquez Tato Departamento de Qumica Fsica. Universidad de Santiago de Compostela. Lugo. Espaæa ¿QuiØn no ha crecido, o al menos no ha jugado con su descendencia, con los ladrillos de la firma danesa LEGO, los cuales, con imaginacin, paciencia y esfuerzo permiten construir torres, castillos o trenes? En la actualidad, la aficin a la construccin no queda limitada a los menores por cuanto que estÆ ampliamente arraigada y difundida entre los adultos, como veremos inmediatamente. QuizÆ pueda parecer publicidad gratuita o falta de rigurosidad suficiente el que en un artculo de la categora que se le debe suponer a Østa, aparezca en su ttulo el nombre de una marca comercial. Pero en este caso, la denominacin LEGO ha trascendido mÆs allÆ de la marca acabando por definir un tipo de producto o juego. Otro ejemplo bien conocido es el Rimel para las pestaæas ya que actualmente existen muchas marcas de rimel. En cualquier caso, vaya en mi descargo, que mi atrevimiento es nfimo comparado con el de Brendan Powell 1 quien ha recreado la Biblia. Ejemplo de su esfuerzo es La Ultima Cena que, sin intencin de ofender ninguna sensibilidad, permtaseme, que la compare con otras ilustres Ultimas Cenas y aunque aqu slo ilustro la comparacin con las Ghirlandaio, Bassano, Dali y Florea, tambiØn podra compararse con las de Leonardo da Vinci, El Greco, Tiziano, Murillo, Sassu o Warhol. 1 www.thebricktestament.com Brendan Powell , La última Cena

Transcript of QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005...

Page 1: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

44

QUÍMICA SUPRAMOLECULAR

José Vázquez Tato Departamento de Química Física. Universidad de Santiago de Compostela. Lugo. España

¿Quién no ha crecido, o al menos no ha jugado con su descendencia, con los ladrillos

de la firma danesa LEGO, los cuales, con imaginación, paciencia y esfuerzo permiten

construir torres, castillos o trenes? En la actualidad, la afición a la construcción no queda

limitada a los menores por cuanto que está ampliamente arraigada y difundida entre los

adultos, como veremos inmediatamente.

Quizá pueda parecer publicidad gratuita o falta de rigurosidad suficiente el que en un

artículo de la categoría que se le debe suponer a ésta, aparezca en su título el nombre de una

marca comercial. Pero en este caso, la denominación LEGO ha trascendido más allá de la

marca acabando por definir un tipo de producto o juego. Otro ejemplo bien conocido es el

Rimel para las pestañas ya que actualmente existen muchas marcas de �rimel�.

En cualquier caso, vaya en mi descargo, que mi atrevimiento es ínfimo comparado con

el de Brendan Powell1 quien ha recreado la Biblia. Ejemplo de su esfuerzo es La Ultima Cena

que, sin intención de ofender ninguna sensibilidad, permítaseme, que la compare con otras

ilustres �Ultimas Cenas� y aunque aquí sólo ilustro la comparación con las Ghirlandaio,

Bassano, Dali y Florea, también podría compararse con las de Leonardo da Vinci, El Greco,

Tiziano, Murillo, Sassu o Warhol.

1 www.thebricktestament.com

Brendan Powell , La última Cena

Page 2: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

45

No debe sorprender la afirmación de que con estos ladrillos se hayan construido los

objetos más diversos. Entre ellos me gustaría resaltar algunos objetos matemáticos como la

banda de Moebius, el punto de silla (muy útil para explicar el estado de transición de una

reacción química), Burt Simpson, El Pensador de Rodin, una mesa de despacho y otras que

veremos más adelante, de las que son autores Andrew Lipson2 y Eric Harshbarger3.

En la actualidad LEGO vende en torno a 200 millones de juegos al año en más de cien

países y tiene más de 8.000 empleados4. Fue fundada en 1932 por Ole Kirk Christiansen, en

Billund (Dinamarca), aunque tal nombre fue adoptado en 1934. El mismo procede de las

palabras danesas "LEg GOdt" que significa �jugar bien�. Lo curioso del caso es que en latín

lego significa �leer� y �reunir.� Por la denominación utilizada y para los propósitos de este

artículo, es interesante resaltar que el predecesor del actual y familiar ladrillo fue creado bajo

2 http://www.lipsons.pwp.blueyonder.co.uk/lego.htm 3 http://www.ericharshbarger.com/lego/ 4 J. M. Bustamante, El ladrillo de plástico que conquistó el mundo, El Mundo, 21-12-2003.

D. Bigordi “El Ghirlandaio”, 1480 ca.

J. Bassano , 1542

S. Dalí. "La comunión debe ser simétrica“.1955

B. Florea, 1994

Banda de MoebiusBanda de Moebius

Punto de sillaPunto de silla

Rodin El pensador Rodin El pensador

BurtBurt

Mesa de despachoMesa de despacho

Page 3: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

46

el nombre de Ladrillos Enlazantes Automáticos y destaco la palabra enlazante por sus

evidentes connotaciones químicas.

El LEGO revolucionó el mundo del juguete ya que el jugador podía crear y crecer sin

necesidad de seguir unas líneas marcadas de antemano. También deseo remarcar las palabras

crear y crecer por cuanto han de ser las definidoras de toda actividad humana: musical,

artística, artesanal,... y ¿cómo no? de la ciencia y la investigación. Desafortunadamente no

siempre es así, por cuanto, no sólo es difícil ser creativo, sino que también lo es analizar el

valor final al que puede dar origen la creatividad. Permítanme que les manifieste que tengo la

sensación personal de que muchas de las ideas que han dado origen a realidades cotidianas

actuales, que en su momento representaron novedades insospechadas, posiblemente no fuesen

financiadas en estas latitudes. Sin ánimo de extenderme en este punto, me atrevo a afirmar

que parte de la razón estriba en la forma con la que se escriben y analizan los proyectos de

investigación. Se escriben con la rigidez clásica del soneto (14 versos endecasílabos o

alejandrinos, con rima consonante repartida en dos cuartetos y dos tercetos de la forma ABBA

ABBA CDC ECE del que el famoso �Érase un hombre a una nariz pegado...� de Francisco de

Quevedo5 es quizá el ejemplo más difundido), y se analizan con parámetros históricos como

experiencia previa o publicaciones en el tema objeto del proyecto, del que, como es obvio, si 5 Érase un hombre a una nariz pegado, érase una nariz superlativa, érase una nariz sayón y escriba, érase un pez espada muy barbado. Éra un reloj de sol mal encarado, érase un alquitara pensativa, érase un elefante boca arriba, era Ovidio Nasón más narizado. Érase un espolón de una galera, érase una pirámide de Egipto, las doce tribus de narices era. Érase un naricísimo infinito, muchísima nariz, nariz tan fiera, que en la cara de Anás fuera delito. Francisco de Quevedo

Primer éxito. Este pato de madera fue líder de ventas en Dinamarca en 1935.

Ole Kirk Christiansen, maestro carpintero fundador de LEGO, (en 1934, Billund).

Ladrillos enlazantesautomáticos

Page 4: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

47

es novedoso, difícilmente alguien tendrá mucha experiencia o publicaciones previas. De no

cumplir estas premisas, las posibilidades de recibir financiación son nulas.

La propia ejecución de un proyecto ya financiado sigue siendo muy rígida porque la

misma ha de, necesariamente, someterse a la consecución de los objetivos enumerados en el

proyecto. Con esta metodología el investigador se va autoencorsetando, autorrestringiendo su

creatividad y ejecutando la ciencia más estándar posible que, sin duda, si se analiza desde la

visión del egoísmo personal, es la más rentable. Gerd Binning6 lo expresa de una manera

simbólica al afirmar �construye una pirámide, vive dentro de ella por un tiempo y luego

abandónala�. Desde aquí propongo que debemos dejar volar la imaginación y dedicar un

porcentaje (cualquiera que sea su valor numérico) a proyectos imaginativos que pretendan dar

saltos cuantitativos en el mundo de la ciencia. Estoy totalmente convencido de que sus

diseñadores y ejecutores alcanzarán siempre resultados magníficos aunque no correspondan

en absoluto a su idea original.

Ahora bien, la sociedad tiene que estar dispuesta a financiar la creatividad, la

imaginación. Confieso que, salvo momentos esporádicos, mi vida universitaria ha estado

siempre más pendiente de decidir si puedo o no comprar una bombona de argón que de

analizar el que dos moléculas se ensamblen. Es urgente que España duplique, al menos, sus

gastos de investigación, atendiendo a las infraestructuras y al gasto ordinario, pero sobre todo

al personal investigador, que es quien, en definitiva, puede poner la imaginación. De no

hacerlo así se verificarán las palabras de Salvador Moncada (el segundo científico más citado

de los últimos veinte años): �Si no financiamos la investigación, nuestros mejores cerebros se

dedicarán a jugar en bolsa� 7.

Aparcaré, al menos momentáneamente, la reflexión anterior y volveré a mi juguete.

Para mis propósitos analizaré en primer lugar cómo es el sistema de ensamblaje de las piezas

del LEGO. En pocas palabras podemos decir que se basa en el viejo sistema de

machihembrado tan común en carpintería y ebanistería (no sin razón, Ole Kirk Christiansen

era maestro carpintero) y en el simple hecho de que cada pieza posee simultáneamente la

dualidad macho-hembra. Como veremos, en Química Supramolecular, al macho suele

denominársele huésped o donante y a la hembra hospedador o aceptor. Tal dualidad, en la

misma pieza, permite que, después de un ensamblaje, la pieza resultante mantenga la 6 Gerd Binning, �Desde la Nada�. Premio Nobel de Física de 1986. 7 Entrevista a Salvador Moncada publicada en El País Semanal del 4-1-2004.

Page 5: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

48

característica dual macho-hembra tal y como muestra la figura. La figura muestra también el

sistema de engarce mecánico entre las piezas, el cual permite que se mantengan unidas y

estables en su posición, ilustrando cómo encajan macho y hembra tras su unión.

El catálogo de piezas del sistema LEGO es muy amplio, manteniendo todas ellas el

mencionado sistema de ensamblaje. Si se descartan las piezas especiales para acabados, de

carácter técnico (como ruedas), accesorios temáticos, puertas, ventanas, tejados, etc.,

observamos que pueden clasificarse como piezas de la forma m×n donde m varía entre 1 y 2,

y n entre 1 y 8. Si m supera el valor de 2 y n supera el valor de 8, normalmente se habla de

plataformas.

Me detendré por un momento en la pieza 1×1. Es obvio que sólo permite construir

columnas monodimensionales. Si cada pieza 1×1 recibe el nombre de monómero, la columna

resultante es un polímero. La diferencia entre un polímero químico convencional y la columna

del LEGO es que, en el polímero, el monómero ha perdido su verdadera identidad. Por

ejemplo, el monómero estireno origina por polimerización radical el poliestireno (altamente

utilizado como aislante térmico o para las conocidas bandejas blancas para la fruta y la carne

de cualquier tienda o supermercado). La diferencia no es sólo radica en la nomenclatura, sino

también en su estructura química y de sus propiedades físicas, químicas y biológicas. Así, el

estireno (monómero) es cancerígeno, mientras que el poliestireno no lo es. Precisamente uno

de los retos que han de afrontar los fabricantes de poliestireno expandido es la de garantizar

que no permanezcan residuos de monómero en el producto final.

Macho Hembra

Montaje resultante de la unión vertical de dos piezas 2×2

Montaje resultante de la unión vertical de dos piezas 2×2

Sistema de encaje macho-hembraSistema de encaje macho-hembra

Page 6: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

49

Las proteínas son un excelente ejemplo de polímero macho-hembra. En ellas los

distintos aminoácidos se unen entre sí mediante enlaces amida resultado de la unión del grupo

ácido de un residuo con el grupo amino del residuo adyacente. Esta secuencia de aminoácidos

constituye la estructura primaria de la proteína. Por lo tanto, las piezas LEGO 1×1, en las que

cada color podría representar un aminoácido diferente, sólo permiten dar cuenta de la

estructura primaria de la proteína. Ello es debido a la rigidez de los ensamblajes en el LEGO,

rigidez parcialmente ausente en una proteína como consecuencia del giro, relativamente libre,

entorno a los enlaces. Las interacciones internas (electrostáticas, enlaces de hidrógeno,

hidrófobas o enlaces bisulfuro) permiten comprender las estructuras secundaria y terciaria de

las proteínas.

Decía que en un polímero químico convencional el monómero ha perdido su verdadera

identidad. Esto no es así en un polímero supramolecular. Un ejemplo lo clarificará mejor. La

molécula que muestro a continuación está formada por dos residuos macho-hembra, esto es,

huésped-hospedador. En este caso, el hospedador es la β-ciclodextrina y el huésped el grupo

adamantilo. El producto se obtuvo por reacción de un derivado aminado de la β-ciclodextrina

con un cloruro de ácido del adamantano, originando el puente de unión amida, el mismo que

he comentado para las proteínas. En la figura de la derecha muestro una representación

esquemática del derivado. Si el mecanismo de machihembrado comentado para el LEGO

funciona en el ladrillo químico, la columna resultante sería la que recojo esquemáticamente en

la figura y que también puede modelarse con las manos. Debo remarcar que, como en el caso

del LEGO, la columna resultante mantiene la característica dual macho-hembra, huésped-

hospedador.

Obtención de poliestireno (PS)

La reacción implica la conversión de un enlace sp2 en uno sp3.

CHH2Cn CH2H2C

n

Obtención de poliestireno (PS)

La reacción implica la conversión de un enlace sp2 en uno sp3.

CHH2Cn CH2H2C

n

R NR'

O

R N+ R'

O-

Enlace amida

R NR'

O

R N+ R'

O-

Enlace amida

ala arg leu lis cis met glu ...Estructura primaria de una proteína

ala arg leu lis cis met glu ...ala arg leu lis cis met glu ...Estructura primaria de una proteína

Page 7: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

50

Ahora bien, el engarce en el LEGO es de carácter mecánico pero ¿cuál es el engarce

en el LEGO químico? Obviamente la respuesta son las fuerzas intermoleculares de las que la

más importante es la formación de enlaces de hidrógeno al que le dedicaré una atención

especial un poco más tarde. Para comprender mejor el proceso de machihembrado químico

dedicaré unos minutos a analizar la estructura, propiedades y aplicaciones de la β-

ciclodextrina.

Las ciclodextrinas son un grupo de moléculas naturales cíclicas constituidas por

unidades de glucopiranosa unidas por enlaces α (1,4). Se obtienen por degradación enzimática

del almidón, fueron descubiertas en 1891 por Villiers8 y los primeros detalles para su

preparación y separación fueron descritos por Schardinger9 en 1903. Las ciclodextrinas

naturales tienen 6, 7 u 8 unidades denominándose, respectivamente, α-, β- y γ-ciclodextrina10 .

Aquí me centraré fundamentalmente en el derivado β. La figura muestra su estructura

troncocónica hueca y valor aceptado para el diámetro de la cavidad. Asimismo, debo destacar

que todos los grupos hidroxilo secundarios están situados en uno de los bordes del cono (parte

ancha) y todos los hidroxilo primarios en el otro (parte estrecha). El interior de la cavidad está

rodeada por los átomos de hidrógeno y los oxígenos glucosídicos, teniendo un fuerte carácter

hidrófobo. La estructura es bastante rígida como consecuencia de la formación de enlaces de

hidrógeno entre los grupos hidroxilo de unidades de glucopiranosa adyacentes.

8 Villiers, A. C. R. Acad. Sci. Paris, 1891, 112, 536. 9 Schardinger, F.; Unters, Z. Nahrungs-Genussmittel Gegrauchs-gegenstande, 1903, 6, 865. 10 Wenz, G. Angew. Chem. Int. Ed. Engl. 1994, 33, 803.

O

NH

Residuo de β-ciclodextrina

Grupo adamantilo

Puente de unión: grupo amida

Ejemplo de molécula ladrillo

O

NH

O

NH

Residuo de β-ciclodextrina

Grupo adamantilo

Puente de unión: grupo amida

Ejemplo de molécula ladrillo Resultado previsible del

ensamblaje de la molécula ladrillo

Columna o polímero

supramolecular

Resultado previsible del

ensamblaje de la molécula ladrillo

Columna o polímero

supramolecular

Modelo manual de machi-embradoen un polímero supramolecular

Modelo manual de machi-embradoen un polímero supramolecular

Page 8: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

51

Debido a su peculiar estructura cíclica hueca, las ciclodextrinas pueden hospedar

distintos compuestos formando complejos de inclusión cuya estequiometría más usual es 1:1.

La formación de estos complejos facilita, en algunos casos, la solubilización de sustancias

poco solubles en disolución acuosa, y en otros, por el contrario, la precipitación de algún

componente de una disolución o suspensión. La formación del complejo colesterol-β-

ciclodextrina, que precipita en disolución acuosa, es un ejemplo del segundo tipo de casos.

Esta característica ha permitido utilizar la β-ciclodextrina en la extracción del colesterol de

alimentos como la mantequilla11.

En definitiva, esta peculiar característica de formar complejos de inclusión estables,

permite que las ciclodextrinas tengan multitud de aplicaciones en farmacología,

biotecnología, tecnología de alimentos, cosmética, química analítica, etc. Las fuerzas

intermoleculares que hacen posible que se forme el complejo son fuerzas de Coulomb, dipolo-

dipolo, van der Waals, enlaces de hidrógeno, etc. que impiden la separación de los

componentes. Las moléculas incluidas están normalmente orientadas de modo que se alcance

el máximo contacto entre la parte hidrófoba de la molécula huésped y la cavidad de la

ciclodextrina apolar. Además la formación de un complejo de inclusión requiere de una

compatibilidad geométrica, esto es, las ciclodextrinas son capaces de formar complejos de

inclusión con componentes que tienen un tamaño comparable a las dimensiones de su

cavidad. En términos ebanísticos, la caja no puede tener un diámetro menor que la espiga. Al

11 Bayol, A.; Frankinet, J.; González, B.; Maffrand, J. P. EP 0-326-469-A1; Roderbourg, H.; Dalemans, D.; Bouhon, R. EP 0-387-708-A1; Graille, J.; Pioch, D.; Serpelloni, M.; Mentink, L. EP 0-406-101-A1. Graille, J.; Pioch, D.; Serpelloni, M.; Mentink, L. EP 0-408-411-A1. Montet, J. C.; Lindheimer, M. H.; Brun, B.; Frankinet, J.; Molard, F.; EP 0-350-379-A1. Courregelongue, J.; Maffrand, J. P. EP )-256-911-A1. Oakenfull, D. G.; Sidhu, G. S.; Rooney, M. L. AU-A-54768/90. Sirotech, AU-A-55112/90.

Aplicaciones tecnológicas de las ciclodextrinas

Todas ellas operaciones importantes para las industrias farmacéutica, alimentaria, productos de limpieza, química, agroquímica, conservación del medio ambiente...

! control de la solubilidad! liberación controlada de sustancias! extracción de componentes! estabilización de sustancias frente al calor o la luz! enmascaramiento de malos olores y sabores! reducción de la volatilidad! conducción de procesos químicos! eliminación de turbidez en líquidos

Aplicaciones tecnológicas de las ciclodextrinas

Todas ellas operaciones importantes para las industrias farmacéutica, alimentaria, productos de limpieza, química, agroquímica, conservación del medio ambiente...

! control de la solubilidad! liberación controlada de sustancias! extracción de componentes! estabilización de sustancias frente al calor o la luz! enmascaramiento de malos olores y sabores! reducción de la volatilidad! conducción de procesos químicos! eliminación de turbidez en líquidos

PrimariosSecundarios

Cavidad y cinturón de hidroxilos

φφφφ, ββββ-CD 6,3 Å

Cavidad hidrófoba

PrimariosSecundarios

Cavidad y cinturón de hidroxilos

φφφφ, ββββ-CD 6,3 Å

Cavidad hidrófoba

φφφφ, ββββ-CD 6,3 Å

Cavidad hidrófoba

+Formación de un complejo de inclusión Huésped

(macho)Hospedador

(hembra)

Complejación(ensamblaje)

Complejo

+Formación de un complejo de inclusión Huésped

(macho)Hospedador

(hembra)

Complejación(ensamblaje)

Complejo

Page 9: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

52

tener distinto diámetro interno, la α- β- y γ son capaces de acomodar moléculas de distinto

tamaño. Por ejemplo, el naftaleno es demasiado voluminoso para la α-ciclodextrina y el

antraceno solo puede penetrar dentro de la γ-ciclodextrina. El ácido propiónico es compatible

con la α-ciclodextrina, pero no penetra satisfactoriamente en cavidades más grandes. La

formación de complejos con moléculas significativamente más grandes que la cavidad sólo es

posible si existen grupos o cadenas laterales que puedan penetrar en la cavidad de la

ciclodextrina.

La aplicación de las ciclodextrinas en la industria se debe principalmente al hecho de

que aumentan la estabilidad física y química (frente a la oxidación, descomposiciones

térmicas o fotoquímicas, etc.), la solubilidad, y biodisponibilidad de muchos compuestos,

permiten transformar los compuestos líquidos en formas cristalinas sólidas, permiten mezclar

dos compuestos incompatibles en una misma formulación, se reducen los efectos secundarios

no deseables, evitan malos sabores y olores, reducen la volatilidad de ciertos solutos (por

ejemplo, aromas), extraen componentes no deseados (como por ejemplo, colesterol de

mantequilla12), etc. Asimismo, la adición de ciclodextrinas o complejos apropiados pueden

modificar favorablemente propiedades físicas como retención de agua, estabilidad de una

emulsión, textura, etc.

12 El método consiste básicamente en la licuación de la mantequilla a una temperatura cercana a los 60 ºC y la adición de una disolución acuosa de ciclodextrina (1-10%, usualmente β-ciclodextrina). Se forma entonces un precipitado (complejo colesterol-β-ciclodextrina) que se separa por centrifugación. Posteriomente la mantequilla ha de ser reconstituida. Algunos ensayos realizados en nuestro laboratorio permitieron extraer hasta un 75% de colesterol con una sola extracción. Variantes del proceso pueden verse en las distintas patentes reseñadas en el pié de figura anterior. El proceso es tan simple que puede realizarse como práctica de laboratorio.

Vista a lo largo del eje a

Vista a lo largo del eje bColumnas de polímero obtenidas por el sistema de machi-embrado

Vista a lo largo del eje a

Vista a lo largo del eje bColumnas de polímero obtenidas por el sistema de machi-embrado

Vista a lo largo del eje a

Vista a lo largo del eje bColumnas de polímero obtenidas por el sistema de machi-embrado

Ubicación de la dimetilformamida

Ubicación de la dimetilformamida

Page 10: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

53

Es hora de que vuelva a la columna química LEGO. En primer lugar se disolvió el

producto en la mínima cantidad posible de DMD y a continuación se recristalizó en agua. La

resolución del cristal13 ha permitido poner de manifiesto los siguientes hechos fundamentales:

1) Obtención de un polímero supramolecular en forma de columna

como consecuencia del autoensamblaje del ladrillo básico, en el que

el grupo adamantilo (macho) se inserta en la cavidad de la

ciclodextrina (hembra) de una molécula adyacente, entrando por el

lado más amplio de la ciclodextrina,

2) En el presente caso, la interacción huésped-hospedador es debida

a fuerzas de van der Waals,

3) Entre el grupo adamantilo y la cavidad de la ciclodextrina se

ubica una molécula de DMF que apantalla el grupo hidrófobo

adamantilo de los grupos hidroxilo, hidrófilos, de la cara primaria. La

distancia entre átomos de nitrógeno de dos moléculas de DMF

equivalentes en la misma columna es de 17,650 Å. La mitad de este

valor es lógicamente un poco mayor que la altura aceptada para el

cono truncado de la ciclodextrina (7,9 Å)14, y

4) En la cavidad de la ciclodextrina no existe ninguna molécula de

agua, estando todas ellas ubicadas en el espacio existente entre las

columnas de polímero.

En definitiva el sistema LEGO también funciona en química.

En el catálogo LEGO no se ofertan piezas macho-macho ni hembra-hembra, a pesar de

que con ellas se podrían obtener los mismos ensamblajes y por lo tanto las mismas estructuras

finales. La razón parece obvia por cuanto que ello obligaría a LEGO a disponer de dos tipos

de piezas que en realidad cuando se ensamblan se transforman en un montaje con terminales

macho-hembra. Así que no merece la pena multiplicar el número de piezas básicas de un

modo innecesario.

13 V. H. Soto Tellini, A. Jover, L. Galantini, F. Meijide y J. Vázquez Tato �Crystal structure of the supramolecular linear polymer formed by the self-assembly of mono-6-deoxy-6-adamantylamide-β-cyclodextrin�, Steroids 2004, 69, 379. 14 W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith y T. Takaha. Chem. Rev. 1998, 98, 1787.

Page 11: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

54

Pero en Química Supramolecular las piezas duales huésped-huésped y hembra-hembra

pueden ofrecer ventajas. En primer lugar, en este tipo de piezas, al ser idénticas las dos

posiciones de ensamblaje, los acoplamientos por uno u otro lado son indistinguibles. La

consecuencia es una simplificación15 elevada de las ecuaciones definitorias de los equilibrios

químicos implicados. En segundo lugar, la síntesis de especies simétricas es mucho más fácil

que la de especies asimétricas, entre otras razones, por la ausencia de selectividades

específicas. La obtención del polímero molecular nylon-6,6 a partir de la hexametilendiamina

y el ácido adípico es un ejemplo de este tipo de situaciones ya que el polímero se obtiene por

reacción de dos especies homoduales16 macho-macho y hembra-hembra. Merece la pena

destacar que, como en el caso del LEGO, después de una monoadición, convertimos al

oligómero en un aminoácido o especie heterodual (macho-hembra). En cualquier caso,

también pueden aparecer problemas. Así, si la relación estequiométrica entre ambos tipos de

monómeros no es perfecta, el tamaño o peso molecular del polímero resultante baja

drásticamente17.

En lo que se refiere a la Química Supramolecular en la figura muestro un esquema

indicativo de la obtención de un polímero supramolecular lineal al utilizar dos monómeros

homoduales con funciones complementarias. El grupo de investigación que tengo el honor de

dirigir tiene amplia experiencia en la síntesis de diversos monómeros homoduales que

posteriormente son complejados con dímeros de ciclodextrina. Aquí, y por semejanza con la

15 K. A. Connors, D. D. Pendergast. J. Am. Chem. Soc. 1984, 106, 7607. 16 En este contexto monómero heterodual, se refiere a un monómero que tiene dos funciones diferentes y complementables (por ejemplo, un aminoácido), mientras que monómero homodual es aquel monómero que tiene dos funciones idénticas (por ejemplo, una diamina o un diácido como el adípico). 17 J. K. Stille, J. Chem. Educ. 1981, 58, 862.

El balance estequiométrico entre monómeros debe ser perfecto: Si uno de los dos reactivos está en exceso un 2% (con un rendimiento de la reacción del 98%), el peso molecular del polímero se reduce en un 33%.

Obtención del nylon a partir de dos monómeros poliduales

n HOC-(CH2)4C-OHO O

+ nH2N(CH2)6NH2 HNC-(CH2)4C-NH(CH2)4

O O

n

+ 2nH2O

El balance estequiométrico entre monómeros debe ser perfecto: Si uno de los dos reactivos está en exceso un 2% (con un rendimiento de la reacción del 98%), el peso molecular del polímero se reduce en un 33%.

Obtención del nylon a partir de dos monómeros poliduales

n HOC-(CH2)4C-OHO O

+ nH2N(CH2)6NH2 HNC-(CH2)4C-NH(CH2)4

O O

n

+ 2nH2O

+

Ensamblaje LEGO de una pieza doble-macho con una doble-hembra

Resultado: una pieza macho-hembra

HOC-(CH2)4C-OHO O

+ H2N(CH2)6NH2

HOC-(CH2)4C-NH(CH2)4NH2

O O+ H2O

Obtención de un monómero héterodual a partir de dos monómeros homoduales

++

Ensamblaje LEGO de una pieza doble-macho con una doble-hembra

Resultado: una pieza macho-hembra

HOC-(CH2)4C-OHO O

+ H2N(CH2)6NH2

HOC-(CH2)4C-NH(CH2)4NH2

O O+ H2O

Obtención de un monómero héterodual a partir de dos monómeros homoduales

Page 12: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

55

molécula macho-hembra ya estudiada nos limitamos a reflejar un dímero de adamantano

perfectamente soluble en agua. Su imaginación puede hacer el resto. Sin embargo, para

ayudarla les mostraré algunos de los polímeros lineales ya publicados con una especie natural,

no sintética pero dual (o ditópica) como el desoxicolato sódico. Es una especie dual porque

forma con monómeros de β-ciclodextrina complejos de estequiometría 1:218. Ya no les

sorprenderá el hecho de que con dímeros de ciclodextrina forme polímeros supramoleculares

lineales19.

Decía que con las unidades 1×1 de LEGO sólo se pueden construir columnas

monodimensionales, o lo que es lo mismo, para ejecutar diseños bi- y tridimensionales

necesitamos recurrir a piezas m×n con m o n mayores que 1. Algún fan del LEGO afirma que

la mejor pieza es la 1×3. En Química Supramolecular, para obtener estructuras no lineales, es

necesario disponer de oligómeros de orden superior al dímero. Un trímero es más que

suficiente. Un simple análisis predictivo de la estructura que puede originar un trímero

homohembra con un dímero macho conduce a la formación de los denominados árboles de

Cayley. Así que, puestos manos a la obra, en el seno del grupo se sintetizó un trímero de

ciclodextrina y como huésped ditópico se consideró que el propio desoxicolato sódico, que

tan buenos resultados había proporcionado anteriormente, podría ser una elección suficiente.

18 P. Ramos Cabrer, E. Alvarez-Parrilla, W. Al-Soufi, F. Meijide, E. Rodríguez Núñez, J. Vázquez Tato. Supramol. Chem. 2003, 15, 33. 19 a) P. Ramos Cabrer, E. Alvarez-Parrilla, F. Meijide, J.A. Seijas, E. Rodríguez Núñez, J. Vázquez Tato. Langmuir, 1999, 15, 5489; b) E. Alvarez Parrilla, P. Ramos Cabrer, A.P. Singh, W. Al-Soufi, F. Meijide, E. Rodríguez Núñez, J. Vázquez Tato. Supramol. Chem., 2002, 14, 397.

Síntesis

Complejación Ensamblaje

Síntesis

Esquema de síntesis de obtención de monómeros monoduales y ensamblaje de los mismos

monómero homodualdoble-huésped (-macho)

monómero homodual doble-hospedador (-hembra)

polímero supramolecular lineal

Síntesis

Complejación Ensamblaje

Síntesis

Esquema de síntesis de obtención de monómeros monoduales y ensamblaje de los mismos

monómero homodualdoble-huésped (-macho)

monómero homodual doble-hospedador (-hembra)

polímero supramolecular lineal

HON N

OH

O

NH

O

HN

O O

Monómero monodual derivado del adamantano

(doble huésped)

HON N

OH

O

NH

O

HN

O O

Monómero monodual derivado del adamantano

(doble huésped)

Page 13: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

56

El resultado obtenido fueron las estructuras fractales que se muestran en la fotografía de la

figura que sugieren la obtención del árbol de Cayley20.

La característica esencial del LEGO, que lo distingue de otros juegos, es el hecho de

que sus piezas, excluidas las específicas, tienen validez universal, esto es, pueden ser

utilizadas en la construcción de cualquier objeto, independiente de su forma y estructura final.

¿Está esta característica presente en la Química Supramolecular? Adelanto el sí como

respuesta pero antes de comentar algún ejemplo es necesario que diga algunas breves palabras

sobre el enlace de hidrógeno como fuerza intermolecular que es de importancia trascendental.

El enlace de hidrógeno es posiblemente la fuerza intermolecular de mayor

importancia. Puede ser considerado como un caso especial de interacción dipolo-dipolo que

aparece entre grupos funcionales D-H y A cuando D y A son átomos muy electronegativos

(N, O, F, Cl). Al átomo o grupo D, al cual, está unido covalentemente el átomo de hidrógeno

se le denomina donante mientras que al A se le conoce como aceptor. La distancia típica entre

donante y aceptor está comprendida entre 2,8 y 3,1 Å y su energía de enlace es

aproximadamente 20 kJ/mol, es decir, del orden de la vigésima parte de la energía del enlace

covalente oxígeno-hidrógeno. Se introdujo en 1920 para describir la estructura interna del

agua. En el hielo cada átomo de oxígeno interviene en la formación de cuatro enlaces de

hidrógeno, haciéndolo en dos como donante y en los otros dos como aceptor. A medida que la

temperatura aumenta el número de enlaces de hidrógeno promedio por molécula de agua

desciende y así, a 10ºC el promedio es 2,3. Los enlaces de hidrógeno se forman y rompen

20 E. Alvarez Parrilla, P. Ramos cabrer, W. Al-Soufi, F. Meijide, E. Rodríguez Núñez, J. Vázquez Tato, Angew. Chem. Int. Ed., 2000, 39, 2856.

Polímeros supramoleculares

Supramol Chem 2002, 14, 397Langmuir 1999, 15, 5489

HO

O

O

NH

HN

CO2-HO

HO

O

O

NH

HN

CO2-HO

O

O

NH

HN

Polímeros supramoleculares

Supramol Chem 2002, 14, 397Langmuir 1999, 15, 5489

HO

O

O

NH

HN

CO2-HO

HO

O

O

NH

HN

CO2-HO

O

O

NH

HN

HO

O

O

NH

HN

CO2-HO

HO

O

O

NH

HN

CO2-HO

O

O

NH

HN

Complejación del desoxicolatosódico por β-ciclodextrina

Supramol Chem 2003, 15, 33

CO2-

HO

HO

Complejación del desoxicolatosódico por β-ciclodextrina

Supramol Chem 2003, 15, 33

CO2-

HO

HOCO2

-

HO

HO

Arbol de Cayley

Df 1,58

Df 1,48

25 µ

Estructuras fractales

Angew Chem Int Ed 2000, 39, 2856

O

O

O

NH

NHHN

+NaDC

Df: dimensión fractal

Arbol de Cayley

Df 1,58

Df 1,48

Df 1,58

Df 1,48

Df 1,58

Df 1,48

25 µ25 µ

Estructuras fractales

Angew Chem Int Ed 2000, 39, 2856

O

O

O

NH

NHHN

O

O

O

NH

NHHN

+NaDC

Df: dimensión fractal

Page 14: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

57

continuamente y en agua el tiempo de vida de los mismos es aproximadamente 9,5 ps. Es el

responsable fundamental de la estructura secundaria (α-hélice o β-laminar) de las proteínas.

Para nuestros propósitos la característica fundamental del enlace de hidrógeno es su

direccionalidad muy útil para diseño de arquitecturas supramoleculares.

Para ilustrar la intercambiabilidad de las piezas y, al mismo tiempo, destacar el papel

del enlace de hidrógeno debo comentar los trabajos de diversos autores en los que se forman

algunos hexámeros cíclicos. La figura adjunta muestra un ejemplo en el que se incorpora la

secuencia aceptor-aceptor-donante de la citosina y la secuencia complementaria donante-

donante-aceptor de la guanina, orientadas mutuamente a 120º. Entre paréntesis en la

nomenclatura de las secuencias anteriores podría sustituirse donante por macho y aceptor por

hembra. La estructura fue determinada por R-X21 y se mantiene unida gracias a los 18 enlaces

de hidrógeno formados. En cualquier caso, debo hacer notar que ninguna de las secuencias es

100% donante ni 100% aceptora lo que permite un recocimiento entre las moléculas más

seguro.

21 M. Mascal, H. M. Hest, R. Warmuth, M. H. Moore, J. P. Turkenburg. Angew. Chem. Int. Ed. 1996, 35, 2204.

Enlace de hidrógeno

Es un caso especial de interacción dipolo-dipolo que aparece entre grupos funcionales D-H y A cuando D y A son átomos muy electronegativos (N, O, F, Cl...)

El hidrógeno unido al donante(enlace covalente), interacciona fuertemente con el aceptor.

D H Aq- q-q+

donante aceptor

Distancia de enlace (2,8-3,1 Å) Energía del enlace: ≈20 kJ/mol (≈ 1/20 del enlace covalente O-H)

Las fuerzas intermoleculares son fuerzas atractivas entre moléculasEnlace de hidrógeno

Es un caso especial de interacción dipolo-dipolo que aparece entre grupos funcionales D-H y A cuando D y A son átomos muy electronegativos (N, O, F, Cl...)

El hidrógeno unido al donante(enlace covalente), interacciona fuertemente con el aceptor.

D H Aq- q-q+

donante aceptor

Distancia de enlace (2,8-3,1 Å) Energía del enlace: ≈20 kJ/mol (≈ 1/20 del enlace covalente O-H)

Las fuerzas intermoleculares son fuerzas atractivas entre moléculas

Carácter direccional : muy útil para diseño de arquitecturas supramoleculares

Es responsable fundamental de la estructura secundaria de las proteínas

•Estas estructuras se deben a la formación de enlaces de hidrógeno entre el -C=O y el -NH-.

β-laminar

α-hélice

Es responsable fundamental de la estructura secundaria de las proteínas

•Estas estructuras se deben a la formación de enlaces de hidrógeno entre el -C=O y el -NH-.

β-laminar

α-hélice

Structure of Water

icehielo

Se introdujo en 1920 para describir la estructura interna del agua

En el hielo:4 EH / H2O

A 10ºC:sólo quedan 2,3

El promedio de vida de un EH es 9,5 ps

Structure of Water

icehielo

Se introdujo en 1920 para describir la estructura interna del agua

En el hielo:4 EH / H2O

A 10ºC:sólo quedan 2,3

El promedio de vida de un EH es 9,5 ps

Enlace de hidrógeno (EH) y ensamblaje

N N

N O

O N

H

H

NH

R

H

H H

Donante EH

Aceptor EH

Enlace de hidrógeno (EH) y ensamblaje

N N

N O

O N

H

H

NH

R

H

H H

Donante EH

Aceptor EHN N

N O

O N

H

H

NH

R

H

H H

Donante EH

Aceptor EH

N N

HN O

O NH

H

NH

(CH2)6CH3

H

H

N

N

NH

O

O

N

H

H

NH

(CH2)6CH3

H

H

N

N NH

O

O

N

H

HNH

(CH2)6CH3H

H

NN

NH

O

ONH

H

NH

(CH2)6CH3

H

H

N

N

HN

O

O

N

H

H

NH

H3C(H2C)6

H

H

N

NHN

O

O

N

H

HNH

H3C(H2C)6 H

H18 EH

N N

HN O

O NH

H

NH

(CH2)6CH3

H

H

N

N

NH

O

O

N

H

H

NH

(CH2)6CH3

H

H

N

N NH

O

O

N

H

HNH

(CH2)6CH3H

H

NN

NH

O

ONH

H

NH

(CH2)6CH3

H

H

N

N

HN

O

O

N

H

H

NH

H3C(H2C)6

H

H

N

NHN

O

O

N

H

HNH

H3C(H2C)6 H

H18 EH

Page 15: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

58

Con variantes mínimas la misma unidad básica ensamblante ha sido utilizada para la

formación de nanotubos. En la figura observamos de nuevo la formación de un rosetón de seis

unidades con 18 enlaces de hidrógeno22. Los rosetones se apilan formando un nanotubo con

doce canales periféricos (formados por los éteres corona, sobre los que volveremos más

adelante) que pueden servir como canales de iones. El diámetro interior del rosetón es de 11

Å. La estructura del tubo se mantiene por las interacciones electrostáticas, hidrófobas y de

apilamiento. Como el aumento de la temperatura conduce a la formación de tubos más largos,

el proceso de auto-ensamblaje es entrópicamente favorable, aspecto bastante general en el

ensamblaje.

El tercer ejemplo es, sin duda, el más conocido de todos: hablo del DNA. Como es

bien conocido su estructura fue propuesta por Watson y Crick, y permítanme que resalte la

contribución, no reconocida en un primer momento, de Rosalind Franklin. Menos conocido es

el hecho, según historia apócrifa, de que antes de que propusieran la estructura en doble

hélice, habían visitado las escaleras de Santo Domingo de Bonaval. Algunas de las imágenes

aquí presentadas pueden verse en movimiento en la página web que se indica y que

recomiendo visita23r. En cualquier libro de texto de Bioquímica aparecen indefectiblemente

los enlaces de hidrógeno entre la timina y la adenina y entre la citosina y la guanina.

22 H. Fenniri, B.-L. Deng, A. E. Ribbe, K. Hallenga, J. Jacob, P. Thiyagarajan. PNAS 2002, 99, 6487. 23 http://www.ehu.es/biomoleculas/AN/an4-1.htm

Diámetro interior 11 Å;Longitud: varios micrómetrosDiámetro interior 11 Å;Longitud: varios micrómetros

Nanotubos de rosetones

Rosetón formado por un macrociclo de seis unidades

Nanotubos de rosetones

Rosetón formado por un macrociclo de seis unidades

Page 16: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

59

Aquí me limitaré a reseñar los hechos fundamentales de la estructura del DNA, que

por otra parte son bien conocidos:

• Las dos cadenas están enrolladas una alrededor de la otra formando una doble cadena

helicoidal girando en torno a un eje imaginario. Ambas cadenas se mantienen

equidistantes a 11 Å una de la otra.

• La esqueleto helicoidal de la parte exterior de la molécula está formado por una secuencia

alternante de desoxirribosa y fosfato, unidos por enlaces fosfodiéster 5'-3'.

• Las cadenas están unidas entre sí mediante pares de bases que se dirigen desde cada

cadena al eje central imaginario. Las bases de cada par están en el mismo plano, el cual es

perpendicular al eje de la hélice. La adenina se empareja siempre con la timina mediante

dos enlaces de hidrógeno, mientras que la citosina se empareja siempre con la guanina por

medio de 3 enlaces de hidrógeno. Debido a este reconocimiento molecular mutuo, las

secuencias de bases de ambas cadenas son complementarias. Esta es básicamente las

interacciones o piezas que he mostrado en los ejemplos anteriores.

• Los pares de bases presentan una rotación de 36º con respecto al par adyacente, de forma

que hay 10 pares de bases por cada vuelta de la hélice, dato particularmente interesante

para lo que mostraré a continuación.

S. Domingo de Bonaval S. Domingo de Bonaval

Interiorhidrófobo

Esqueletodesoxiribosa-fosfato

Enlaces de hidrógeno

Exterior hidrófilo

A: adeninaG: guaninaC: citosinaT: timina

Bases nitrogenadas

Repulsión electrostática

DNA

Watson

Crick

Rosalind Franklin

Imagen de difracción de rayos X del DNA

Interiorhidrófobo

Esqueletodesoxiribosa-fosfato

Enlaces de hidrógeno

Exterior hidrófilo

A: adeninaG: guaninaC: citosinaT: timina

Bases nitrogenadas

Repulsión electrostática

Interiorhidrófobo

Esqueletodesoxiribosa-fosfato

Enlaces de hidrógeno

Exterior hidrófilo

A: adeninaG: guaninaC: citosinaT: timina

Bases nitrogenadasA: adeninaG: guaninaC: citosinaT: timina

Bases nitrogenadas

Repulsión electrostática

DNA

Watson

Crick

Rosalind Franklin

Imagen de difracción de rayos X del DNAImagen de difracción de rayos X del DNA

http://www.ehu.es/biomoleculas/AN/an4-1.htm

NN

O Me

dRO

HN

N

NN

N

Rd

HH

N

N

NN

O

HRd

HNH

NN

NH

Me

dRO

H

G-C A-T

10,85 Å

2,84 Å

2,92 Å

2,84 Å 2,82 Å

2,91 Å

10,85 Å

NN

O Me

dRO

HN

N

NN

N

Rd

HH

N

N

NN

O

HRd

HNH

NN

NH

Me

dRO

H

G-C A-T

10,85 Å

2,84 Å

2,92 Å

2,84 Å 2,82 Å

2,91 Å

10,85 Å

Page 17: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

60

He dicho que en el DNA real las dos cadenas están enrolladas en torno a un eje

imaginario. En una primera versión del DNA, Harshbarger necesitó un eje físico que sirviese

de soporte estructural de la doble hélice. La hélice tiene un diámetro de 64 �LEGO bricks� y

1,20 m de altura. Las cadenas laterales (azules) tienen una altura de tres unidades. Cada base

está identificada por un color diferente: amarillo, verde, roja y naranja. Debo hacer notar que

hay un fallo de construcción: el sentido de giro de la hélice es inverso al correcto. Sin

embargo, Harshbarger, a requerimiento de un editor de una revista de genética que la deseaba

para ilustrar una portada, construyó una nueva versión que no necesita la columna vertical

para mantenerse erguida. De este modelo merece la pena que destaque que tiene �10,5 pares

de bases por una vuelta completa de la hélice�. Según el propio autor �¡no lo había

planificado!�.

Antes de continuar me gustaría comentar aquí que muy recientemente ha sido

publicada24 una doble hélice de DNA con una espiral que es un 20% más ancha que la natural.

Ello se consiguió gracias a la adición de un anillo bencénico a la adenina (A) y a la timina (T)

resultando bases expandidas xA y xT. Los autores han encontrado que estas bases extendidas

se hibridan con las naturales originando el DNA expandido o xDNA. La figura adjunta es

autoexplicativa. Las dobles hélices de xDNA son más estables termodinámicamente que el

DNA natural lo que ha sido atribuido a las interacciones de apilamiento o interacciones π-π

24 H. Liu, J. Gao, S.R. Lynch, Y.D. Saito, L. Mard, E.T. Kool, Science 2003, 302, 868.

Giro de la hélice erróneoNecesidad de un eje central soporteGiro de la hélice erróneoNecesidad de un eje central soporteGiro de la hélice erróneoNecesidad de un eje central soporte

Versión sin columna central

- Sentido de giro correcto - 10 pares de bases por vuelta completa de la hélice

Versión sin columna central

- Sentido de giro correcto - 10 pares de bases por vuelta completa de la hélice

Page 18: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

61

entre los anillos aromáticos, es decir, el mismo tipo de interacciones que aparecen en el

grafito y que explican la estructura cristalina en forma de espina de pescado del benceno.

Como las nuevas bases son fluorescentes podrán ser utilizadas para marcar y observar el

DNA.

La capacidad del DNA para formar estructuras supramoleculares es casi ilimitada.

Veamos algunos ejemplos. Siguiendo a Seeman25, a la hora de hacer nanoconstrucciones, el

DNA tiene una serie de ventajas sobre otros sofisticados diseños ensamblables. 1) El

ensamblaje en el DNA se reduce a la simple regla A con T y G con C, como ya he comentado,

2) Se puede disponer de cualquier secuencia arbitraria, 3) El DNA puede ser manipulado y

modificado gracias a una gran batería de enzimas incluyendo DNA-ligasa, exonucleasas y

endonucleasas de restricción, y 4) De una tres vueltas la doble hélice es un polímero rígido y

estable, y tiene un código externo que puede ser leído por proteínas y ácidos nucleicos.

Para comprender alguno de estos diseños es necesario conocer en primer lugar la

unión Holliday que es posiblemente el intermedio de DNA más importante en la

recombinación genética ya que está implicada en la recombinación específica local y

probablemente en la recombinación homóloga. En la figura recojo un ejemplo de unión 25 N.C. Seeman, H. Wang, X. Yang, F. Liu, C. Mao, W. Sun, L. Wenzler, Z. Shen, R. Sha, H. Yan, M.H. Wong, P. Sa-Ardyen, B. Liu, H. Qiu, X. Li, J. Qi, S.M. Du, Y. Zhang, J.E. Mueller, T.-J. Fu, Y. Wang, J. Chen. New Motifs In DNA Nanotechnology. Fifth Foresight Conference on Molecular Nanotechnology. http://www.islandone.org/Foresight/Conferences/MNT05/Papers/Seeman/index.html

xDNA

H. Liu, J. Gao, S. R. Lynch, Y. D. Saito, L. Mard, E. T. Kool, Science 2003, 302, 868.

xDNA

H. Liu, J. Gao, S. R. Lynch, Y. D. Saito, L. Mard, E. T. Kool, Science 2003, 302, 868.

Apilamiento de las bases.

Interacciones ππππ-ππππ

Interacciones ππππ-π π π π

Son interacciones que aparecen entre moléculas que tienen anillos aromáticos.

Benceno cristalinoEstructura del grafito

Estructura en espina

Apilamiento de las bases.

Interacciones ππππ-ππππ

Interacciones ππππ-π π π π

Son interacciones que aparecen entre moléculas que tienen anillos aromáticos.

Benceno cristalinoEstructura del grafito

Estructura en espina

Apilamiento de las bases.

Interacciones ππππ-ππππ

Apilamiento de las bases.

Interacciones ππππ-ππππ

Interacciones ππππ-π π π π

Son interacciones que aparecen entre moléculas que tienen anillos aromáticos.

Benceno cristalinoEstructura del grafito

Estructura en espina

Page 19: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

62

Holliday que muestra que los parámetros geométricos de la misma son perfectamente

conocidos26. Esta unión consiste en cuatro cadenas de DNA emparejadas en cuatro ramales de

dobles hélices en torno a un punto de ramificación. Si en el entorno del punto de ramificación,

las cadenas tienen una secuencia simétrica, entonces puede ocurrir la relocalización del punto,

fenómeno que se denomina migración ramal. La mayoría de la información acerca de los

puntos de unión ramificados procede de estudios de uniones ramificadas de DNA

inmovilizadas constituidas por complejos de cuatro cadenas en las que se ha eliminado la

secuencia simétrica. Ello fija el punto. La figura27 muestra en movimiento cómo ocurre esta

migración ramal. Es claro que una imagen vale más que mil palabras.

A partir de la unión Holliday se pueden construir redes. Obviamente, es necesario que

las terminales de cada cadena tengan complementariedad entre las bases (indicado mediante

la utilización de la misma letra con o sin comilla) y el cierre de las uniones se consigue

mediante una DNA-ligasa. Como las terminales de las uniones mantienen siempre las

valencia abiertas, la estructura se puede extender mono- y bidimensionalmente por adición de

más monómeros.

26 D.N. Gopaul, F. Guo, G.D. van Duyne, EMBO J. 1998, 17, 4175. 27 http://www.sdsc.edu/journals/mbb/ruva.html http://engels.genetics.wisc.edu/Holliday/index.html

Unión Holliday DN Gopaul, F Guo, GD van Duyne, EMBO J. 1998, 17, 4175

Es el intermedio de DNA más importante en la recombinación genética

Consiste en cuatro cadenas de DNA emparejadas en cuatro ramales de dobles hélices en torno a un punto de ramificación.

Unión Holliday DN Gopaul, F Guo, GD van Duyne, EMBO J. 1998, 17, 4175

Es el intermedio de DNA más importante en la recombinación genética

Consiste en cuatro cadenas de DNA emparejadas en cuatro ramales de dobles hélices en torno a un punto de ramificación.

Migración ramal: relocalización del punto

http://www.sdsc.edu/journals/mbb/ruva.htmlhttp://engels.genetics.wisc.edu/Holliday/index.html

Migración ramal: relocalización del punto

http://www.sdsc.edu/journals/mbb/ruva.htmlhttp://engels.genetics.wisc.edu/Holliday/index.html

Page 20: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

63

Al utilizar DNA doblemente entrecruzado, conocido simplemente como DX y que

corresponde a pares de uniones ramificadas de cuatro brazos que han sido ligadas a dos brazos

adyacentes, Seeman ha podido conseguir nuevos diseños. Aunque puede sorprender, existen

únicamente cinco isómeros posibles, de los que tres tienen dominios paralelos (y que son

relevantes en procesos biológicos) y dos son antiparelos, mucho más estables en sistemas con

poca separación entre los entrecruzamientos. En la figura recojo estos cinco dominios. A

partir de los mismos se pueden conseguir estructuras más complejas (véanse el esquema y

fotografía de la figura). Seeman también ha desarrollado ensamblajes con moléculas de DNA

triplemente entrecruzadas aunque de las mismas no muestro ningún ejemplo.

Formación de un red

La unión (covalente) se hace mediante DNA-ligasa

Unión Holliday

Ensamblaje 1-D

Ensamblaje 2-D

Ensamblaje 1-D

Ensamblaje 2-D

Para el crecimiento de la estructura las terminales de cada cadena han de tener complementariedad

En disolución originan formaciones bidimensionales a través de enlaces de hidrógeno. La separación entre los engarces (rayas) es aprox. 32 nm.

cientos de nm

Varias µµµµm33nm

Estructuras derivadas

A y B* son dos moléculas derivadas del DNA que pueden interaccionar a través de sus extremos complementarios (y engarzables).

El * indica que B contiene engarces que se proyectan fuera del plano de las hélices.Actúan como marcadores en la técnica AFM (atomic force microscopy).

4 nm

16 nm2 nm

En disolución originan formaciones bidimensionales a través de enlaces de hidrógeno. La separación entre los engarces (rayas) es aprox. 32 nm.

cientos de nm

Varias µµµµm33nm

En disolución originan formaciones bidimensionales a través de enlaces de hidrógeno. La separación entre los engarces (rayas) es aprox. 32 nm.

cientos de nm

Varias µµµµm

cientos de nm

Varias µµµµm

cientos de nm

Varias µµµµm33nm33nm

Estructuras derivadas

A y B* son dos moléculas derivadas del DNA que pueden interaccionar a través de sus extremos complementarios (y engarzables).

El * indica que B contiene engarces que se proyectan fuera del plano de las hélices.Actúan como marcadores en la técnica AFM (atomic force microscopy).

4 nm

16 nm2 nm

4 nm

16 nm2 nm

D:doble-entrecruzadas. A: antiparalelo; P:Paralelo: orientación relativa de los dos dominios de las dobles hélices. E (even): par; O (odd): impar: Nº de medias vueltas entre los cruces

Cuarta letra: describe moléculas entrecruzadas paralelas con un nº impar de medias vueltas entre los cruces. La media vuelta extra puede corresponder a separación mayor (wide, W) o menor (narrow, N).

Isómeros de moléculas de DNA doble-entrecruzadas

Flechas(externas) o puntos: indican simetría

N W

http://seemanlab4.chem.nyu.edu/homepage.html

D:doble-entrecruzadas. A: antiparalelo; P:Paralelo: orientación relativa de los dos dominios de las dobles hélices. E (even): par; O (odd): impar: Nº de medias vueltas entre los cruces

Cuarta letra: describe moléculas entrecruzadas paralelas con un nº impar de medias vueltas entre los cruces. La media vuelta extra puede corresponder a separación mayor (wide, W) o menor (narrow, N).

Isómeros de moléculas de DNA doble-entrecruzadas

Flechas(externas) o puntos: indican simetría

N W

http://seemanlab4.chem.nyu.edu/homepage.html

Page 21: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

64

Para terminar con el capítulo del DNA mostraré las topologías que Seeman ha

conseguido con una única cadena. Pueden ser cuatro: círculo, trébol con nudos negativos,

ocho y trébol con nudos positivos.

Existen dos tipos de nudos: positivos y negativos. El DNA natural, denominado B-

DNA es una molécula con hélices que giran a derechas (como los tornillos). Los

entrecruzamientos de las dos cadenas generan nudos negativos. Existe otra forma de DNA,

denominado Z-DNA, cuya hélice gira a izquierdas por lo que sus nudos son positivos.

Aunque, desde un punto de vista topológico el B-DNA y el Z-DNA son imágenes

especulares, en la realidad tridimensional esto no es así porque este último tiene una

estructura en zig-zag. El B-DNA puede sufrir una transformación B → Z y originar Z-DNA

La tendencia de un segmento de DNA a sufrir una transformación B → Z depende de dos

variables: secuencia de dinucleótidos y modificación de las bases (por ejemplo introduciendo

un grupo metilo en la posición 5 de la citosina). La figura adjunta muestra una molécula con

dos pares de dominios, cada uno de ellos conteniendo un giro completo de la doble hélice.

Cada uno de estos cuatro dominios (o regiones complementarias) es capaz de sufrir la

transición B → Z, aunque uno de ellos la experimenta con mayor facilidad. Así:

1) A baja fuerza iónica: ninguno de los dominios forma dobles hélices resultando

topología del círculo.

Topologías de una sola cadena de DNA

CIRCULO

TREBOL [-]

OCHO

TREBOL [+]

UNA CADENA

Una cadena puede originar cuatro estados topológicos dependiendo de las condiciones de unión.

Nudo [-]

Nudo [+]

[-]

B-DNA

Mano derecha

Z-DNA

Mano izquierda

[+]

Esqueleto en zig-zag

Topologías de una sola cadena de DNA

CIRCULO

TREBOL [-]

OCHO

TREBOL [+]

UNA CADENA

CIRCULO

TREBOL [-]

OCHO

TREBOL [+]

CIRCULO

TREBOL [-]

OCHO

TREBOL [+]

UNA CADENA

Una cadena puede originar cuatro estados topológicos dependiendo de las condiciones de unión.

Nudo [-]

Nudo [+]

[-]

B-DNA

Mano derecha

Z-DNA

Mano izquierda

[+]

Esqueleto en zig-zag

Nudo [-]Nudo [-]

Nudo [+]Nudo [+]

[-]

B-DNA

Mano derecha

[-]

B-DNA

Mano derecha

Z-DNA

Mano izquierda

[+]

Esqueleto en zig-zag

Z-DNA

Mano izquierda

[+]

Esqueleto en zig-zag

TrébolTrébol

Page 22: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

65

2) A mayor fuerza iónica, ambos dominios forman B-DNA, resultando el trébol con

nodos negativos. ¿Cómo no? ¡también tenemos el trébol en LEGO!

3) En condiciones medias de promoción Z, el dominio más sensible se convierte en

Z-DNA, resultando el ocho.

4) Finalmente, en condiciones más vigorosas de promoción Z, el segundo dominio

también se convierte en Z-DNA, y origina el trébol con nodos positivos.

La interconversión entre las distintas topologías está catalizada por DNA-

Topoisomerasas I y III.

Es interesante, en relación con lo que decía al principio de la conferencia, lo que

Seeman recuerda de los intentos de publicar sus primeros trabajos hace aproximadamente

veinte años. Al utilizar el DNA como una herramienta química, los revisores o editores de las

revistas indefectiblemente preguntaban ¿dónde está la genética? y no publicaban sus trabajos.

Eran demasiado novedosos. Pasaré ahora a otro capítulo.

Para la construcción de objetos temáticos o específicos, LEGO dispone de un catálogo

ampliamente surtido comprendiendo piezas técnicas como ruedas, ejes, engranajes, motores,

fuentes de energía, neumática, etc.28 ¿Qué nos ofrece la química supramolecular en este

terreno?.

28 Figuras tomadas de la página web de LOGO: http://www.lego.com/eng/

Unidad energética

http://www.lego.com/engRuedas y ejesRuedas y ejes

Motor

Neumática

Motor

NeumáticaNeumática

Conexiones

Page 23: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

66

Para contestar a esta pregunta tengo que retroceder a los años 60 y observar el trabajo

de Pedersen29, a quien por cierto, no le gustaba escribir trabajos científicos. En su

trascendental trabajo que consta de veinte páginas describe la síntesis, identificación,

estructura y propiedades de 33 poliéteres cíclicos a los que denominó éteres corona.

Asimismo describe la preparación de complejos estables entre estos éteres y cationes como

Li+, Na+ y otros. Por lo tanto, el éter juega el papel de hospedador o hembra y el catión el de

huésped o macho. Está universalmente reconocido que el trabajo de Pedersen es uno de los

pilares iniciales de la Química Supramolecular. Pedersen compartió el premio Nobel de

Química de 1987 con Donald J. Cram y Jean-Marie Lehn. Su descubrimiento fue serendípico,

esto es por casualidad. El propio Pedersen lo describe así:

�Mi descubrimiento tuvo mucho de casual. Realizando una reacción, observé la

aparición de un subproducto blanco, fibroso y cristalino. Una vez que lo aislé, observé

que este material era capaz de combinarse con sales inorgánicas como el NaCl y el

KCl, haciendo que fuesen solubles en líquidos orgánicos en una forma que antes no

había sido posible. Después fui capaz de obtener el producto intencionadamente y

diseñar una síntesis sistemática. Se trataba de un poliéter cíclico que al combinarse

con la sal inorgánica formaba un complejo en el que el éter cíclico se coloca alrededor

del catión metálico de la sal. ¡Fue claramente un descubrimiento serendípico!� .

Lo importante del caso es que el rendimiento de este producto secundario era tan sólo

el 0,4%, un nivel de impurezas al que se exige hoy día a un reactivo comercial de calidad.

29 C.J. Pedersen �Cyclic poliethers and their complexes with metal salts�, J. Am. Chem. Soc., 1967, 89, 7017.

Muralla romana de LugoMuralla romana de Lugo

Eteres corona

Partiendo del producto 1 Pedersen esperaba obtener el producto 2 pero estaba impurificado con catecol desprotegido y obtuvo un 0,4 % de 3. El producto 3 con KMnO4 da un color púrpura en benceno o cloroformo

OH

OH+

ClO

O2

H+ O

OH

O

O

O

OO

O

O

O

NaOHn-BuOH

Cl

H+/MeOHn-BuOH

OH

OO

O

HO

Et2O2 2

+O

OO

O

OO

1

2 3

Pedersen

Eteres corona

Partiendo del producto 1 Pedersen esperaba obtener el producto 2 pero estaba impurificado con catecol desprotegido y obtuvo un 0,4 % de 3. El producto 3 con KMnO4 da un color púrpura en benceno o cloroformo

OH

OH+

ClO

O2

H+ O

OH

O

O

O

OO

O

O

O

NaOHn-BuOH

Cl

H+/MeOHn-BuOH

OH

OO

O

HO

Et2O2 2

+O

OO

O

OO

1

2 3

Pedersen

Page 24: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

67

La denominación de los nuevos compuestos como éteres corona supuso una

simplificación enorme en la denominación de estos compuestos, no extrañándome que, como

Pedersen confiesa, tuviese dificultades para recordarlos. Así el nombre sistemático del primer

éter corona que descubrió, cuya imagen tenemos en la figura, es: ¡2,3,11,12-dibenzo-

1,4,7,10,13,16-hexaoxacyclooctadeca-2,11-dieno! Lo que nunca confesó Pedersen ¡es que

había estado en Lugo y observado la ciudad rodeada por la Muralla!.

Entre las aplicaciones de su descubrimiento puedo citar rápidamente: mejora de la

reactividad química en reacciones de sustitución nucleófica, eliminación, oxidación,

hidrólisis, etc., obtención de aniones desnudos (con lo cual se aumenta su reactividad),

extracción selectiva de iones, aplicaciones biológicas dado que pueden actuar como canales

sintéticos de cationes para atravesar membranas biológicas (recordando en este sentido a

ionóforos naturales como nonactina y valinomicina que son capaces de incorporar Na+, K+,

en su interior y transportarlos a través de membranas), análisis químico, etc.

En la figura muestro dos ejemplos de las últimas aplicaciones citadas. Así, el

[21]corona-7 L-fenilalanina se incorpora a un péptido α-hélice de 21 aminoácidos y 15

residuos hidrófobos de L-leucina30. Los residuos del éter corona están ubicados en la cadena

de modo tal que pueden alinearse para formar un canal. El canal fue incorporado a una bicapa

lipídica sintética y se demostró que los iones la atravesaban. El éter corona fue elegido de

modo tal que no formase complejos fuertes con el K+ (lo que sí ocurriría con el [18]corona-6)

y así evitar el bloqueo del canal.

30 N. Voyer, Preparation of supramolecular devices using peptide synthesis: design and synthesis of a tubular hexa-crown molecule, J. Am. Chem. Soc. 1991, 113, 1818.

K+

Canales sintéticos para cationes para atravesar membranas biológicas

HN

O

H

OO

O

O

OO

O

K+K+

Canales sintéticos para cationes para atravesar membranas biológicas

HN

O

H

OO

O

O

OO

O

Ionóferos naturales

O O

O

O

O

O

OO

OO

OO

**

*

*

* * * ***

*

*

****

nonactina

NH

O

O

O

HN

O

O

O

HN

O

OO

O

NHO

O

O

NH

O

OHNO

O

O

*

*

*

*

* * *

*

*

*

**

valinomicina

Ionóferos naturales

O O

O

O

O

O

OO

OO

OO

**

*

*

* * * ***

*

*

****

nonactina

NH

O

O

O

HN

O

O

O

HN

O

OO

O

NHO

O

O

NH

O

OHNO

O

O

*

*

*

*

* * *

*

*

*

**

valinomicina

O O

O

O

O

O

OO

OO

OO

**

*

*

* * * ***

*

*

****

nonactina

NH

O

O

O

HN

O

O

O

HN

O

OO

O

NHO

O

O

NH

O

OHNO

O

O

*

*

*

*

* * *

*

*

*

**

valinomicina

O O

NN

OO

O

O

O

OR

O O

En presencia de K+ el grupo cromóforo del criptando adjunto, fluoresce con una intensidad proporcional a la concentración de K+.

Medir K+ en presencia de grandes cantidades de Na+.

Concentraciones de Na+ (145mM) no afectan el análisis.

ProblemaO O

NN

OO

O

O

O

OR

O O

En presencia de K+ el grupo cromóforo del criptando adjunto, fluoresce con una intensidad proporcional a la concentración de K+.

Medir K+ en presencia de grandes cantidades de Na+.

Concentraciones de Na+ (145mM) no afectan el análisis.

Problema

Page 25: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

68

El segundo de los ejemplos se refiere al problema de medir K+ en presencia de grandes

cantidades de Na+. El problema puede resolverse gracias al criptando adjunto cuyo grupo

cromóforo fluoresce con una intensidad proporcional a la concentración de K+. Además,

concentraciones de Na+ hasta 145 mM no afectan el análisis. Una de sus aplicaciones

concretas se refiere a la determinación de K+ en sangre para lo cual se fija la molécula a un

polímero que permite la construcción de un dispositivo que, de un modo continuo, determina

el K+ en sangre31. En el párrafo anterior he utilizado la palabra criptando. Y es que el

descubrimiento de Pedersen desencadenó la obtención de toda una cascada de nuevos

contenedores de iones y complejos, algunos de los cuales tienen denominaciones que

servirían como títulos de películas de terror: esferandos, criptandos, sepulcrandos,

sarcofaguina, calixarenos, sideróforos, etc. En el diseño de los nuevos compuestos se buscaba,

entre otros aspectos, que la constante de equilibrio fuese cada vez mayor, eliminando efectos

entrópicos desfavorables y una menor reorganización de la estructura del receptor o, recuerdo,

hembra. Entre los valores más altos figura la complejación de Ag+ por oxaza-éteres corona ya

que en agua el logaritmo decimal de la constante es 7,80. Ello se debe a que la existencia de

heteroátomos donantes más blandos aumenta, de acuerdo con el principio HSAB, la afinidad

de la corona por los metales de transición.

La complejación de cationes por esferandos permitió aumentar el valor de la constante

de equilibrio en varios órdenes de magnitud. Así la constante de equilibrio de formación del

complejo de Li+ con el esferando de la figura supera el valor de 1016 mol.dm-3. Este hecho es

consecuencia de que el ligando (hembra) está preorganizado, es decir, no necesita

reordenamiento para complejar el catión o, en otros términos, alojar al macho. El ligando es

además rígido para evitar que autorrellene la cavidad. 31 J.E. Trend, C.A. Kipke, M. Rossmann, M. Yafuso, S.L. Patil, 1993, US patent 5,474,743.

Influencia del heteroátomo

7,80Ag+

Log K O

NH

OHN

O

O

1,60

O

O

O

O

O

O

Influencia del heteroátomo

7,80Ag+

Log K O

NH

OHN

O

O

1,60

O

O

O

O

O

O

7,80Ag+

Log K O

NH

OHN

O

O

1,60

O

O

O

O

O

O

Esferandos

O

MeOMe

OMeO

Me OMe

O Me

1,2 × 1014>7×1016Log KCDCl3

Na+Li+Catión

Ligandospreorganizados

Esferandos

O

MeOMe

OMeO

Me OMe

O Me

1,2 × 1014>7×1016Log KCDCl3

Na+Li+Catión

1,2 × 1014>7×1016Log KCDCl3

Na+Li+Catión

Ligandospreorganizados

Page 26: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

69

Sin embargo, estos valores no son nada al compararlos con algunas constantes de

complejación del hierro por sideróforos. El hierro es un elemento esencial para la vida. Sin

embargo, para las bacterias y los hongos es muy difícil de obtener debido a que la hidrólisis

del hierro (III) limita su concentración a un valor tan bajo como 10-18 mol.dm-3 a pH 732. Para

atraparlo estos microorganismos producen agentes complejantes denominados sideróforos.

Así, la Enterobactina, una bacteria siderófora, forma complejos extremadamente estables con

el hierro (III) ya que la constante de equilibrio para el complejo que mostramos en la figura

alcanza el estimable valor de 1052 mol.dm-3. El triéster cíclico porta tres catecoles (ligados vía,

como no, enlaces amida) que forman una configuración ∆ en torno al metal. Una vez dentro

de la bacteria, un enzima rompe el esqueleto de la enterobactina y libera el hierro.

¿Puede conseguirse un valor todavía más alto? Esta pregunta retórica tiene la obvia

respuesta afirmativa. Pero antes de mostrarla tengo que volver a hacer un paréntesis y hablar

de los metalfulerenos endohédricos33.

El buckminsterfulereno (nombre original) o fulereno C60 es una molécula constituida

por sesenta átomos de carbono. Es esférica y está formada por doce pentágonos y veinte

hexágonos. Cada átomo de carbono ocupa un vértice y se une a otros tres átomos, lo que

origina una molécula con un elevado grado de simetría. Es una tercera forma alotrópica del

carbono (las otras son el grafito y el diamante), descubierta en 1985 por los premios Nobel de

Química H. W. Kroto, R. F. Curl y R. E. Smalley34. Su estructura recuerda un balón de fútbol,

una piedra del neolítico o las obras de marquetería de Giovanni. Su nombre original

constituye un homenaje al arquitecto Richard Buckminister Fuller quien desarrolló la 32 P.D. Beer, P.A. Gale, D.K. Smith, Supramolecular Chemistry, Oxford Science Publications. Oxford, 1999. 33 H. Shinohara, Rep. Prog. Phys. 2000, 63, 843. 34 H.W. Kroto, R.F. Curl, R. E. Smalley. C60: buckminsterfullerene. Nature, 1985, 318, 162.

OO

O

NHO

HO

HO

O

HNO OH

OH

OO

HN

OHHO

O

Sideróforos

enterobactina

NHO HN O

O O

O

O

O

O

HNO

O

O

O

O

O

OFe

3+

Κeq=1052 M

Fe(III)OO

O

NHO

HO

HO

O

HNO OH

OH

OO

HN

OHHO

O

Sideróforos

enterobactina

NHO HN O

O O

O

O

O

O

HNO

O

O

O

O

O

OFe

3+

Κeq=1052 M

Fe(III)

Page 27: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

70

estructura del domus geodésico. En la actualidad existen otros fulerenos (C70, C76, C84, etc.)

que son menos simétricos que el C60 por lo que sus propiedades físicas son inferiores a las de este

último.

Las propiedades de estas moléculas son realmente sorprendentes y de importancia

crucial: superconductividad, ferromagnetismo, actividad óptica no lineal, luminiscencia,

médicas, almacenamiento de gases, etc. Para ilustrarlas me detendré en las últimas

mencionadas, al mismo tiempo que respondo a la pregunta ¿de qué podríamos llenar la

cavidad vacía de los fulerenos y en particular del C60?. Algunos autores han decidido rellenar

la cavidad con diferentes elementos o iones de la tabla periódica35 existiendo ya diversos

aproximaciones a su síntesis36. De este modo surgen los denominados metalfulerenos

endohédricos.

Para tomar buenas imágenes mediante la técnica de resonancia magnética de imagen

(MRI)37 es necesario utilizar agentes de contraste. De este modo las imágenes son brillantes y

35 L.J. Wilson, Medical Applications of Fullerenes and Metallofullerenes.The Electrochemical Society. Interface.Winter 1999 36 H. Shinohara, Rep. Prog. Phys. 2000, 63, 843 37 E. M. Haacke, R.W. Brown, M.R. Thompson, R. Venkatesan, Magnetic Resonance Imaging. Physical Principles and Sequence Design. Wiley-Liss, Nueva York, 1999.

Fulerenos

Fulerenos

Fulerenos

Piedra del neolíticoPiedra del neolítico

GiovanniGiovanniGiovanniGiovanniGiovanniGiovanniGiovanniGiovanni

Domus geodésico.Richard Buckminister Fuller

Domus geodésico.Richard Buckminister Fuller

Page 28: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

71

contrastadas. El fenómeno físico que los explica es la disminución de la relajación de los

protones del agua cercana al agente de contraste. Con este fin se utilizan diversos iones,

destacando el gadolinio (III) que se utiliza en forma de quelatos de los que el más difundido

comercialmente es, con diferencia, el Magnevist. Pues bien, ya se ha conseguido introducir el

Gd (III) en el interior del C60 siendo sus características fundamentales las siguientes:

1) El caparazón C60 posee una gran superficial (> 200 Å2) y su diámetro interior es 7-

8 Å capaz de acomodar lantánidos.

2) La superficie carbonada admite modificaciones químicas lo que se traduce en la

capacidad de ampliar su gama de posibles aplicaciones.

3) Una vez encapsulado el ion, este no puede salir, es decir, su constante de

disociación es cero. Se ha superado a los sideróforos38.

4) El fulereno, al secuestrar el ion, impide su toxicidad.

5) La carga del complejo es cero.

6) La relajatividad del Gd@C82(OH)x es cinco veces mayor que la del Magnevist

posiblemente debido a que el complejo relaja los protones de las moléculas de

agua con enlaces de hidrógeno sobre la enorme superficie del fulereno que ya he

reseñado.

De todas formas la mínima cantidad sintetizada de estos productos hace que tenga un

precio estimado en torno al ¡millón de dólares por gramo! Algún día otros países incluyendo

el nuestro pagarán esta investigación.

38 Este es un excelente ejemplo de enlace mecánico. Otros ejemplos se analizan más abajo y corresponden a los denominados rotaxanos y catenanos.

-El fulereno secuestra el ion (Kdis=0) impidiendo su toxicidad

-La relajatividad del Gd@C82(OH)x es cinco veces mayor que la del Magnevist

Gd@C82(OH)x

Fulereno encapsulando un lantánidoMetalfulerenos endohédricos

-El fulereno secuestra el ion (Kdis=0) impidiendo su toxicidad

-La relajatividad del Gd@C82(OH)x es cinco veces mayor que la del Magnevist

Gd@C82(OH)x

Fulereno encapsulando un lantánidoMetalfulerenos endohédricos

Page 29: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

72

La segunda forma de llenar la cavidad es con un gas y parece lógico empezar por el

hidrógeno. Esto ha sido llevado a cabo muy recientemente por Komatsu y colaboradores39.

Estos autores sintetizan un fulereno abierto, cuya boca es lo suficientemente grande como

para permitir la entrada de una molécula de hidrógeno. Llenan la cavidad del fulereno tras

exponerlo al gas a 800 atm y 200ºC durante 8 horas, siendo el rendimiento de la

encapsulación del 100%. A temperatura ambiente no existe pérdida del hidrógeno, pero al

elevar la temperatura hasta 160ºC se produce una liberación lenta del gas. Los mencionados

autores también detectaron que la irradiación con laser cierra el fulereno con el hidrógeno en

su interior, obteniéndose el complejo H2@C60. En cualquier caso este complejo simplemente

ha sido detectado por masas en fase gaseosa.

Aparentemente me he desviado de la trayectoria que me había marcado pero no es así.

Cuando el huésped o macho es estrecho y largo (que nadie entienda connotaciones

sexuales en esta afirmación) los éteres corona forman los denominados rotaxanos40. Estos

rotaxanos los forman también las ciclodextrinas.

El término rotaxano se aplica a complejos químicos que tienen la particularidad de que

una parte de los mismos (rueda) puede girar en torno a un componente lineal (eje). Como

ruedas podemos utilizar cualquier compuesto cíclico como éteres corona, ciclodextrinas41,

cucurbituril, calixarenos, etc. y como eje cualquier molécula lineal. En la figura represento

esquemáticamente un rotaxano que muestra que el compuesto lineal (macho), puede terminar

en grupos voluminosos que impiden la salida del macrociclo. Es obvio que entre ambos

39 K. Komatsu, Y. Murata, M. Murata, J. Am. Chem. Soc. 2003, 125, 7152 40 H.W. Gibson, M.C. Bheda, P. T. Engen, Prog. Polym. Sci. 1994, 19, 843. 41 El primer rotaxano obtenido con ciclodextrinas se debe a H. Ogino J. Am. Chem. Soc. 1981, 103, 1303.

Almacenes de hidrógeno K Komatsu, Y Murata, M Murata, JACS 2003, 125, 7152

Fulereno abierto que permite la inserción de una molécula de hidrógeno.

Almacenes de hidrógeno K Komatsu, Y Murata, M Murata, JACS 2003, 125, 7152

Fulereno abierto que permite la inserción de una molécula de hidrógeno.

Page 30: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

73

componentes no existe ninguna unión covalente. La bibliografía es rica en diversos tipos de

rotaxanos: según la naturaleza de los grupos terminales del eje, cabezas terminales diferentes

o no (es decir, simétricos o asimétricos), la estructura química del eje y la rueda, o el número

de ruedas por eje. En este último caso se denominan polirrotaxanos de los que hablaré más

abajo.

Un ejemplo significativo de las interacciones que se producen entre ambos

componentes del rotaxano se debe a Yonemura y colaboradores quienes estudiaron la

interacción entre α-, β- y γ-ciclodextrina con viológeno-carbazol42. Mediante experimentos de

RMN estos autores determinaron la estructura más estable del complejo al observar la

existencia de una interacción entre los protones del grupo carbazol y la superficie externa de

la α- ciclodextrina. Este resultado es importante porque implica que la cadena alquílica se

encuentra en el interior de la ciclodextrina. Alcanzar esta estructura final requiere que los

anillos aromáticos del viológeno hayan pasado a través del anillo de la ciclodextrina. Los

autores determinaron entonces los parámetros termodinámicos de activación de la cinética de

formación del complejo los cuales indican que el paso de los grupos aromáticos a través del

anillo de la α-ciclodextrina es más desfavorable que a través del anillo de la β-ciclodextrina

debido al mayor diámetro del anillo de esta última. Estimaron la diferencia en 27 kJ/mol.

Como corolario a esta conclusión cabría esperar que la γ-ciclodextrina no ofreciese un

impedimento significativo al paso del grupo viológeno como realmente ocurre. En la figura

representamos esquemáticamente el perfil energético de la reacción que sugieren los

42 H. Yonemura, M. Kasahara, H. Saito, H. Nakamura, T. Matsuo, J. Phys. Chem. 1992, 96, 5765.

Rotaxanos

EjeRueda Grupos

terminales

Rotaxanos

Rotaxanos

EjeRueda

EjeRueda Grupos

terminalesGrupos terminales

Page 31: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

74

anteriores comentarios. Un segundo ejemplo, que no muestro por no ser reiterativo fue

logrado aquí en Lugo al estudiar la complejación del CHAPS (un derivado del ácido cólico)43.

En la siguiente figura resumo los diferentes tipos de polirrotaxanos de los que tengo

referencia. En el campo de las ciclodextrinas sólo se han obtenido los indicados en primer y

segundo lugar.

Para obtener los polirrotaxanos lineales es necesario utilizar un eje polimérico como

por ejemplo polietilenglicol, polipropilenglicol, poliisobutileno, etc.44 La estructura y

estequiometría de los complejos formados están perfectamente determinadas. Así, la

estequiometría del polirrotaxano oligoetilenglicol-α-ciclodextrina es 2:1, es decir, dos

unidades de etilenglicol por cada ciclodextrina. Este dato está completamente de acuerdo con

las dimensiones moleculares del etilenglicol (6,6 Å) y la altura del cono truncado de la α-

ciclodextrina (6,7 Å). Análogamente, la estequiometría del complejo poli(isobutileno)-γ-

ciclodextrina es 3:1, es decir, tres unidades de isobutileno por cada ciclodextrina, estando, de

nuevo, en concordancia con las dimensiones moleculares de tres unidades de isobutileno y la

altura de la γ-ciclodextrina. En definitiva las ciclodextrinas (perlas) están atravesadas por un

polímero (hilo) por lo que Harada bautizó a este tipo de compuestos con el nombre de

collares. En comparación con la formación de complejos con huéspedes simples, la formación

43 A. Jover, R.M. Budal, F. Meijide, V.H. Soto, J. Vázquez Tato. Determination of microscopic equilibrium constants for the complexation of ditopic guests by cyclodextrins from NMR experiments, enviado para su publicación. 44 A. Harada, J. Li, S. Suzuki, M. Kamachi, Macromolecules 1993, 26, 5267.; A. Harada, J. Li, M. Kamachi, Nature, 1994, 370, 126.; A. Harada, J. Li, M. Kamachi, Macromolecules, 1994, 27, 4538; A. Harada, J. Li, M. Kamachi, J. Am. Chem. Soc. 1994, 116, 3192.

Interacciones entre componentes H Yonemura, M Kasahara, H Saito, H Nakamura, T Matsuo, J. Phys. Chem. 1992, 96, 5765.

n=4,6,8,10,12

N(CH2)nN+

N(CH2)2CH3+

2Br- Datos en kJ/mol

α-CD 75β-CD 48 Parámetros de activación para los

procesos de formación-descomposición del complejo

Interacciones entre componentes H Yonemura, M Kasahara, H Saito, H Nakamura, T Matsuo, J. Phys. Chem. 1992, 96, 5765.

n=4,6,8,10,12

N(CH2)nN+

N(CH2)2CH3+

2Br- Datos en kJ/mol

α-CD 75β-CD 48 Parámetros de activación para los

procesos de formación-descomposición del complejo

Page 32: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

75

de collares puede ser enormemente lenta abarcando periodos de varios meses de duración. El

rendimiento en su obtención ha llegado hasta valores tan altos como el 68%.

Como continuación de su trabajo Harada tuvo la idea de unir covalentemente las

ciclodextrinas insertadas y retirar posteriormente el polímero. El resultado fue la formación de

una estructura tubular45 de masa molecular aproximadamente 2×104 g/mol, consistente con la

masa molecular del polirrotaxano de partida. Por lo tanto, el tubo tiene del orden de 15

unidades de α-ciclodextrina.

Dejaré ahora aparcadas las ruedas.

En una conferencia pronunciada a finales de diciembre de 1959 Richard Philips

Feynman afirmó lo siguiente: �De lo que quiero hablar es del problema de manipular y

45 A. Harada, J. Li, M. Kamachi, Nature, 1993, 364, 516. El experimento los autores lo describen como sigue: Al hacer reaccionar el rotaxano, previamente formado, con epiclorohidrina en disolución de NaOH 10%, y posterior neutralización con HCl, se forma un precipitado amarillento que por posterior hidrólisis, en medio fuertemente básico (NaOH 25%) a 45ºC, para eliminar los grupos terminales da origen a la estructura tubular.

Polirrotaxanos

M Born, T Koch, H Ritter, Acta Polymer. 1994, 45, 68

OO

OO

OO2N NH

NO2

NH

O2N

NO2O

OO

OO

OO

OO

OO2N NH

NO2

NH

O2N

NO2O

OO

OO

OO

OO

OO2N NH

NO2

NH

O2N

NO2O

OO

OO

A Harada, J Li, M Kamachi, JACS 1994, 116, 3192

collares

Otros polirrotaxanos

Polirrotaxanos

M Born, T Koch, H Ritter, Acta Polymer. 1994, 45, 68M Born, T Koch, H Ritter, Acta Polymer. 1994, 45, 68

OO

OO

OO2N NH

NO2

NH

O2N

NO2O

OO

OO

OO

OO

OO2N NH

NO2

NH

O2N

NO2O

OO

OO

OO

OO

OO2N NH

NO2

NH

O2N

NO2O

OO

OO

A Harada, J Li, M Kamachi, JACS 1994, 116, 3192

collares

Otros polirrotaxanos

OH

O H

OH

O H

OH

O H

OH

O H

OH

O H

OH

O H

OHOH

O HO H

OH

O H

OHOH

O HO H

OH

O H

OHOH

O HO H

OH

O H

OHOH

O HO H

OH

O H

OHOH

O HO H

Estructura tubular generada a partir de ciclodextrinas

OH

O H

OH

O H

OH

O H

OH

O H

OH

O H

OH

O H

OHOH

O HO H

OH

O H

OHOH

O HO H

OH

O H

OHOH

O HO H

OH

O H

OHOH

O HO H

OH

O H

OHOH

O HO H

Estructura tubular generada a partir de ciclodextrinas

Page 33: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

76

controlar objetos a muy pequeña escala. Tan pronto como lo menciono, se me habla de

miniaturización y hasta dónde se ha llegado en la actualidad. Se me habla de motores

eléctricos del tamaño de una uña o del dedo meñique. Ya existe este dispositivo en el

mercado, se me dice. Se me dice que se puede escribir una oración al Señor en la cabeza de un

alfiler. Pero eso no es nada, eso es lo más arcaico. Un mundo asombrosamente pequeño

subyace debajo. Hacia el año 2000, cuando se mire hacia esta época, se preguntarán por qué

no fue hasta el año 1960 cuando alguien comenzó a moverse seriamente en esa dirección...�

Ya he mostrado algunos ejemplos de ese nanomundo al que Feynman se estaba

refiriendo y, aunque son muchos los aspectos que hemos tenido que ir dejando en el tintero,

para no agotar su paciencia e ir finalizando, hablaré de máquinas moleculares. Personalmente

prefiero llamarlos simplemente motores porque, como rezan los libros de �Conocimiento del

medio� de mis hijas �los motores son máquinas que transforman la energía en movimiento�.

También ya les he mostrado algunas imágenes de los motores de LEGO. ¿Qué nos ofrece la

Química Supramolecular?

La metodología a seguir se resume en el esquema adjunto46 en el que muestro que al

recibir un estímulo externo (químico, electroquímico, fotoquímico, cambio de pH, etc.) una

entidad supramolecular puede transformar su estructura y alcanzar una nueva geometría

implicando un movimiento translacional o rotario de sus componentes. Además, el proceso ha

de ser reversible, esto es, volver a su posición de partida cuando el estímulo es retirado o la

molécula recibe un contraestimulo. De este modo, el mecanismo funciona de una forma

cíclica que es lo requerido por cualquier motor termodinámico o electromagnético. Ahora les

mostraré algunos ejemplos.

Así, existe un motor relacionado con el isomerismo traslacional47. El esquema

simplificado de la figura muestra un rotaxano cuyo macrociclo puede anclarse en dos

posiciones diferentes, exhibiendo un movimiento de vaivén. En el ejemplo, un ciclofano

tetracatiónico (hembra u hospedador) hospeda un huésped que posee dos unidades 46 V. Balzani, M. Gómez-López, J.F. Stoddart, Acc. Chem. Res. 1998, 31, 405 47 R.A. Bissell, E. Córdova, A.E. Kaifer, J.F. Stoddart, Nature 1994, 369, 133.

Estado inicial Estado finalEstímulo

Estímulo: químico, electróquímico, luz, pH

Máquinas moleculares Estado inicial Estado finalEstímulo

Estímulo: químico, electróquímico, luz, pHEstado inicial Estado final

Estímulo

Estímulo: químico, electróquímico, luz, pH

Máquinas moleculares

Page 34: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

77

diferenciadas: una unidad bencidínica y un bifenol, siendo la primera de ellas más rica en

electrones. Gracias a la interacción electrostática el ciclofano (recordemos tetracatiónico) se

ubica sobre la unidad bencidínica, siendo esta ubicación del 100% en acetonitrilo a -44ºC. Por

protonación de la bencidina, convertimos esta unidad en un catión por lo que se produce una

repulsión electrostática que debilita la interacción huésped-hospedador haciendo que el

ciclofano se traslade hacia la posición del bifenol. La conversión en catión de la unidad

bencidínica puede conseguirse por protonación, que representa un estímulo químico, o por

oxidación de la misma mediante un estímulo electroquímico o químico. Si se invierte el

proceso, esto es, desprotonación o reducción de la bencidina, el sistema recobra su posición

inicial. En definitiva el proceso es reversible.

Rotaxano

N+

N+

N+

N+

NH O O O O O O O SiHNOOOSi

N+

N+

N+

N+

NH O O O O O O O SiH2N+OOOSi

bifenolbencidina

Ciclofano tetracatiónico

Conversión en catión de la bencidina

Estímulo

Estímulo

Rotaxano

N+

N+

N+

N+

NH O O O O O O O SiHNOOOSi

N+

N+

N+

N+

NH O O O O O O O SiH2N+OOOSi

bifenolbencidina

Ciclofano tetracatiónico

Conversión en catión de la bencidina

Estímulo

N+

N+

N+

N+

NH O O O O O O O SiHNOOOSi

N+

N+

N+

N+

NH O O O O O O O SiH2N+OOOSi

bifenolbencidina

Ciclofano tetracatiónico

Conversión en catión de la bencidina

Estímulo

EstímuloEstímulo

El segundo de los ejemplos corresponde a un catenano. Los catenanos se forman por

la unión mecánica de al menos dos compuestos cíclicos como muestro en la figura. Para

conseguir el motor uno de los dos eslabones de la cadena debe girar siguiendo el aro del otro

eslabón, exhibiendo un movimiento rotatorio. En este ejemplo48 el eslabón de la cadena que

gira consiste en un éter corona que posee dos residuos diferentes ricos en electrones π: uno de

ellos es un tetratiafulvaleno disustituido, al que denominaré abreviadamente TTF) y el otro es

el residuo 1,5-dioxinaftaleno. En su estado más estable, la unidad TTF se ubica en el interior

de la cavidad del ciclofano tetracatiónico. La oxidación química y/o electroquímica del TTF

48 M. Asakawa, P.R. Ashton, V. Balzani, A. Credi, C. Hamers, G. Mattersteig M. Montalti, A.N. Shipway, N. Spencer, J.F. Stoddart, M.S. Tolley, M. Venturi, A.J.P. White, D.J. Williams, Angew. Chem. Int. Ed. Engl. 1998, 37, 333.

Page 35: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

78

da un radical monocatiónico TTF+ o un dicatión TTF2+ por lo que, debido a la repulsión

electrostática es expulsado de la cavidad tetracatiónica y reemplazado por el anillo neutro del

dioxonaftaleno. En definitiva, se produce la rotación del poliéter macrocíclico. Esta acción va

acompañada por un dramático cambio de color desde el verde (que corresponde a la situación

inicial) hasta el púrpura (que corresponde al estado final). Si posteriormente se produce una

reducción, química o electroquímica, se recupera el estado original.

El último de los ejemplos, diferente a los anteriores, corresponde al DNA e implica la

utilización de la interconversión del B → Z del DNA, de la que ya he hablado con

anterioridad. Para ello se conectan dos dobles moléculas entrecruzadas (en rojo y azul) a

través de un segmento que contiene una región que permite la interconversión B → Z (en

amarillo). La interconversión se consigue mediante la adición de cloruro de hexaaminocobalto

(III) y el proceso se invierte por la extracción de este reactivo. En la figura los círculos

indicados representan colorantes fluorescentes unidos al dispositivo que permiten demostrar

la interconversión. Aunque no me detendré en ellos el DNA permite la consecución de otros

dispositivos mecánicos49.

49 H Yan, X Zhang, Z Shen, NC Seeman, Nature, 2002, 45, 62

Catenanos

Estímulo

Movimiento rotatorio

N+

N+

N+

N+

SS

SS

O

OO

O

O

O

OO

OO

Tetratiafulvaleno, TTF

Poliéter-macrociclo

DioxinaftalenoDNP

ciclofanotetracatiónico

Recuperación del estado original

Oxidación: TTF→TTF+

Expulsión del TTF+

de la cavidad tetracatiónica

la cavidad tetracatiónica pasa a ser ocupada por el anillo neutro

Reducción: TTF+ → TTF

++ +

++.

++ +

++.+

+ ++

+e

-e++ +

+

CatenanosCatenanosCatenanos

Estímulo

Movimiento rotatorio

Estímulo

Movimiento rotatorio

N+

N+

N+

N+

SS

SS

O

OO

O

O

O

OO

OO

Tetratiafulvaleno, TTF

Poliéter-macrociclo

DioxinaftalenoDNP

ciclofanotetracatiónico

Recuperación del estado original

Oxidación: TTF→TTF+

Expulsión del TTF+

de la cavidad tetracatiónica

la cavidad tetracatiónica pasa a ser ocupada por el anillo neutro

Reducción: TTF+ → TTF

++ +

++.

++ +

++.+

+ ++

+e

-e++ +

+

N+

N+

N+

N+

SS

SS

O

OO

O

O

O

OO

OO

Tetratiafulvaleno, TTF

Poliéter-macrociclo

DioxinaftalenoDNP

ciclofanotetracatiónico

Recuperación del estado original

Oxidación: TTF→TTF+

Expulsión del TTF+

de la cavidad tetracatiónica

la cavidad tetracatiónica pasa a ser ocupada por el anillo neutro

Reducción: TTF+ → TTF

++ +

++.+

+ ++

+.

++ +

++. +

+ ++

+.++ +

+++ +

++e

-e++ +

+

Page 36: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

79

Hace un momento afirmé que he tenido que dejar muchas cosas en el tintero. Por no

mencionar más que algunas citaré las clásicas micelas, vesículas o membranas y los procesos

de reconocimiento molecular, ensamblaje e interacción entre macromoléculas como proteínas

y DNA tan importantes para la vida por estar relacionadas con aspectos como catálisis

enzimática, encefalopatías espongiformes transmisibles (incluyendo la enfermedad de

síndrome de Creutzfel-Jakob), etc. Tampoco he mencionado los procesos de autorreplicación

o los fenómenos de cooperatividad que surgen en los procesos de ensamblaje. Al fin y al

cabo, la química supramolecular no es más que una sociología molecular50 y, en este contexto,

un virus no es más que una estructura supramolecular. Si espero haber puesto de manifiesto la

importancia de la Química Supramolecular en relación con las denominadas nanotecnologías.

Permítaseme que finalice con las palabras de Jean-Marie Lehn referidas a lo que el

futuro demandará de esta Química LEGO. Afirma este premio Nobel de Química que �hasta

fechas recientes la Química no ha ahondado en la respuesta a las preguntas

-¿Cómo se vuelve compleja la materia?

-¿Cómo ha sido la evolución hacia sistemas más complejos, incluyendo los

organismos inteligentes?

¿Qué otras formas de materia compleja pueden ser desarrolladas y creadas?

50 J.M. Lehn, Supramolecular Chemistry. Concepts and Perspectives, VCH, 1995.

Región (en amarillo) que sufre transiciones B-Z

DNA: Dispositivos mecánicosRegión (en amarillo) que sufre transiciones B-Z

DNA: Dispositivos mecánicos

Page 37: QUÍMICA SUPRAMOLECULAR...Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular 46 el nombre de Ladrillos Enlazantes Automáticos

Revista Iberoamericana de Polímeros Volumen 6(1), Febrero de 2005 Vázquez Tato Química Supramolecular

80

Como ciencia de la estructura y transformación de la materia, la Química otorga

medios para interrogar el pasado, explorar el presente y construir puentes hacia el futuro� 51.

Fin de la cita.

En este camino a recorrer, será necesario diseñar y obtener compuestos cada vez más

complejos. Cuando la Química Supramolecular afronta sistemas mayores y más complejos, el

esfuerzo sintético se expande y el tiempo y el dinero representan aspectos de importancia

creciente52.

En cualquier caso, urge que España fomente la investigación en Química

Supramolecular o perderá una vez más el tren en un campo de investigación del que, desde

que se asentó de un modo definitivo la denominación supramolecular, no han pasado más que

veinticinco años. Apenas aparecen nombres de españoles en esta investigación y algunos de

ellos se encuentran asentados en el extranjero. Así que como he vuelto al comienzo de mi

exposición, excluída la anacrusa referida al LEGO, al demandar más esfuerzo social dirigido a

la investigación, me he convertido en una máquina parlante cíclica que, a menos que las

autoridades académicas detengan no se callará nunca.

Agradecimientos. El autor agradece al MEC (Proyecto MAT2001-2911) y a la Xunta

de Galicia (proyecto PGIDIT02PXIC26202PN) la financiación recibida.

Este artículo corresponde a la lección magistral impartida por el Prof. José Vázquez

Tato en la Facultad de Ciencias de Lugo de la Universidad de Santiago con motivo de la

celebración de la festividad de Santo Tomás de Aquino el 28 de Enero de 1983.

51 Jean-Marie Lehn, PNAS 2002, 99, 4763. 52 �Puede ser fácil diseñar en el papel un hospedador que posea una lista óptima con todas las funcionalidades deseadas. Uno puede imaginarse por ejemplo una aldolasa con una docena de grupos catalíticos y enlazantes exquisitamente ordenados en el espacio tridimensional. El problema es, por supuesto, sintetizar tal molécula. ¿Merece la pena que muchas personas durante muchos años se dediquen a preparar tan maravillosa molécula, mientras se preguntan si, al final, será una fracaso debido a las incertidumbres o desórdenes en la geometría del complejo huésped-hospedador? Me refiero a este problema porque es universal. Cuando la Química Supramolecular afronta sistemas mayores y más complejos, el esfuerzo sintético se expande. El tiempo y el dinero representan aspectos de importancia creciente, sobre todo en aquellos que potencialmente tienen importancia comercial. [...] los mecanismos biológicos, que han tenido milllones de años de evolución, probablemente nunca serán verdaderamente emulados.� F.M. Menger, PNAS 2002, 99, 4818.