pirometalurgia del cobre

download pirometalurgia del cobre

of 49

description

Presentación hecha por Hector Henao

Transcript of pirometalurgia del cobre

  • Curso Pirometalurgia 2015 (Primer semestre)

  • Evaluacin del curso Peso

    Acadmica

    1-Tutoriales total=7, valor de cada tutorial, siete tutoriales 2 puntos

    cada uno

    14

    2-Balances de masa y energa (reporte) 16

    3-Lectura, reporte y presentacin de un documento (cinco minutos de

    presentacin)

    15

    4-Construccin de diagramas de fases usando simulacin (trabajo en

    grupo)

    10

    5-Examen final 25

    Total 80

    Laboratorios

    Reportes de laboratorio 20

    Puntajes mnimos para aprobar el curso (el estudiante deber aprobar ambos

    componentes del curso, de otra forma ser reprobado)

    Acadmica 44

    Laboratorios 11

    La asistencia es obligatoria par los laboratorios

    Asistencia a la clase acadmica mayor al 90 % incrementara la nota incluso de 52

    a 55 puntos (Nota: La nota no incrementara en otros casos) .

  • Al2O3

    ZINCSmelting

    LEADSmelting

    NickelSmelting

    CopperSmelting

    COALASHES

    Fe-Mnalloys

    S

    MgO

    Cu2O

    Mn-O

    PbO

    ZnO

    K2O

    Na2ONiO

    Cr-O

    Sn-O

    Fe-Cralloys

    Fe-Nialloys

    FeO|

    Fe2O3

    |

    SiO2

    CaO

    S

    The basic system

  • 4Source materials: copper sulphide minerals

    Cu2S: Chalcocite

    Cu, Fe and S are chemically bound

    CuS : Covellite

    Minor elements: Valuable: Au, Ag, Ni

    Unwanted: As, Sb, Bi

    Cu5FeS4:Bornite

    CuFeS2: Chalcopyrite

    Cu12As4S13 : Tennantite

    FeS2: Pyrite

    FeAsS : Arsenopyrite

    (Fe, Ni)9S8, : Pentlandite

    SiO2: Quartz

    Minor components:

    Al2O3, MgO, CaO

    Principal Other

  • 5Basic Reactions in Cu production

    Process aims:

    Metal production (Cu, Au, Ag, Ni, PGM......

    Metal purification (S, O, As, Zn, Pb )

    Recycling (Au, Ag)

    CuFeS2

    1) removal of S into gas S+O2 SO2 (gas)

    2) oxidation of FeS FeO / Fe3O4

    then fluxing of FeO / Fe3O4 with SiO2 slag

    3) conversion of Cu2S Cu (liquid)

  • 6Process Air

    Oxygen

    Fuel

    Molten

    Bath

    Feed Mix

    Offgas

    Offgas

    System

    Molten

    Products

    Steps in Cu

    productionConcentrate with

    20-30wt% of Cu

    Matte 45-

    70wt% Cu

    Blister copper

    99% Cu

    Cu anodes

    0.002%S and 0.15%O

    Cleaning

    -Electric Furnace

    -Flotation

    Smelting

    Converting

    Refining

    Slag

    1-3 % Cu

    Slag

  • 7FeS

    H2O

    SiO2 Al2O3

    Cu2S

    CONCENTRATE

    CuS

    SO2O2

    N2

    GASESH2O

    Heat

    AIR

    (O2 , N2)

    Flux

    (SiO2 )

    OXYGEN

    Cu production schematic

    Slag Cu2O-FeO-SiO2

    Matte Cu2S-FeS

    O2 SO2

    Flux

    (SiO2 )

    White metal Cu2S (l)Anode Cu

    O2

    Slag Cu2O-FeO-SiO2SO2

    4.

    CLEANING

    Blister

    Cu-S-O

    1%S, 0.1%O

    1. SMELTING

    2. COVERTING3. REFINING-2stages

    1- %O=0.7%, %S=0.02

    2-%O=0.15, %S=0.02

    CO/H2O

    CH4 O2

    SO2

    12

  • Que informacin requerimos para describir el proceso?

    Que reacciones ocurren durante el proceso?

    Como representar esta informacin en forma matemtica?

    Como representar la informacin en forma grafica?

    Como obtener la informacin necesaria para determinar los parmetros de la formulacin

    matemtica? Cual es la confiabilidad y que tan precisa es la informacin?

    Cuales son los rangos de temperatura y composicin donde las fases se encuentran en

    estado solido, liquido o gaseoso?, Porque se presenta la separacin de fases?

    Como sistematizar la informacin relacionada a las reacciones quimicas?

    Cuales son los mecanismos en la cintica de las reaccione?

  • Cual es el objetivo de obtener y sistematizar esta informacin?

    1-Curiosidad o satisfaccin de entender con mayor profundidad los procesos de

    produccin pirometalurgica de metales

    2-Posibilidad de tomar decisiones durante la operacin industrial en una forma

    analtica (basado en principios qumicos) contrario a la toma de decisions por

    ensayo y error (basado solo en la experiencia)

    3-Posibilidad de mejorar (optimizar) los procesos existentes

    4-Posibilidad de modificar los procesos existentes para procesar concentrados o

    material de reciclaje con nuevas caractersticas.

    5-Posibilidad de desarrollar nuevos procesos

  • Que reacciones ocurren durante el proceso?

  • 14/03/2015 11

    Smelting

    furnace

    Feed 100 t/h, CuFeS2

    Coal

    Flux (SiO2)

    O2+air

    (50%O2 enrichment)

    Mechanical dust (4.5%)

    Gas

    Slag (Fe/SiO2 = 1.6-2.0)

    Matte 60 wt % Cu

    Heat loss 11.1MW

    Input is optimised

    to get output

    specifications

    Heat balance and chemical partitioning

  • 14/03/2015 12

    Reaction

    Shaft

    Slag Cu2O+FeO+SiO2

    Matte or liquid Cu metal

    Uptake

    Shaft

    Settler

    SO2 + N2

    CuFeS2

    FeAsS

    SiO2FeS

    Cu2S

    FeS2

    Cu2SO4

    Cu2S FeS

    Fe3O4

    Fe3O4Cu2SO4

    Gas/liquid & gas/solid

    reaction mechanisms

    in reaction shaftO2 + N2

    Slag

    Matte

    Cu2S

    Fe3O4

    SiO2

    SiO2CuFeS2

    FeS

    Liquid/liquid and

    liquid/solid reaction

    mechanisms in settler

    SO2

    Matte

    M

    Slag

    Matte

    Decantation

    and liquid/liquid

    reactions

    Fe3O4Cu2SO4

    SiO2

    Dust

    carry-over

    e.g. Smelting Flash Furnace

    complex reactor with many zones

  • 14/03/2015 13

    Reaction

    Shaft

    2CuFeS2(concentrate) + (4-1y)O2(g) + xSiO2(s)

    {Cu2S+yFeS(l,matte)} + {(2-y)FeO+xSiO2(l,slag)} + (3-

    y)SO2(g)

    e.g. Smelting Flash Furnace

    complex reactor with many zones

    Slag Cu2O+FeO+SiO2

    Matte or liquid Cu metal

    Uptake

    Settler

    CuFeS2 +SiO2+ O2 + N2SO2 + N2

    I. Flash zone

    O2,gas + S SO2, gas

    O2gas Ocondencede.g. 1 O2+2FeFe2O3 liq/solid

    SO2 + O2+CuCuSO4 liq/solid

    II. Settler under and close to flash zone

    Fe2O3 liq/solid + S SO2, gas + 2FeO

    CuSO4 + 4S 2SO2, gas + Cu2SIII. Settler far from flash zone

    Matte drops settling

  • Que reacciones ocurren durante el proceso?

    FeS(l)+Cu2O(l)=Cu2S(l)+FeO(l).(1)

    FeS(l)+3/2O2=FeO(l)+SO2 (g).(2)

    1/2S2 (g)+O2 (g)=SO2 (g)(3)

    Cu2S(l)+3/2O2(g)=Cu2O(l)+SO2(g)(4)

    FeS(l)+3Fe3O4(s)=10FeO(l)+SO2 (g).(5)

    3FeO(l)+1/2O2=Fe3O4 (s)(6)

    2Cu(l)+1/2O2=Cu2O(l)............(7)

    SO2 (g)=[S]+2[O].(8)

    PbS(l)+3/2O2 (g)=PbO(l)+SO2 (g)..(9)

    ZnS(l)+3/2O2 (g)=ZnO(l)+SO2 (g)(10)

    Pb(l)+SO2(g)=PbS(l)+O2 (g).(11)

    Metalic elements:

    Cu, Fe, Pb, Zn

    No metals:

    O, S

    Minor components:

    CaO, Al2O3, MgO, Cr2O3

    Other minor elements:

    Au, Ag, Mo, Ni,.As, Sb, Bi,

  • Representacin grafica de las ecuaciones de

    equilibrio qumico

    Diagramas de predominancia

  • 16

    Use of predominance diagrams to analyse conditions for metal

    stability

    Fe(metal) + 0.5O2 = FeO(slag) Keq1=aFeO/(aFe*P0.5

    O2)

    Fe(metal) + 0.5S2 = FeS(matte) Keq2=aFeS/(aFe*P0.5

    S2)

    FeS(matte)+0.5O2=FeO(slag)+0.5S2 Keq3=aFeO*P0.5

    S2/(aFeS*P0.5

    O2)

    Using 0 = Gro + RTln Keq at a fixed temperature

    the relative stabilities of these the condensed phases Fe, FeO and

    FeS can be described on predominance diagrams PS2 and PO2.

    Thermodynamics of copper smelting and converting

    O2 eq FeO Felog P 2 log K 2 log a / a

    S 2 eq FeS Felog P 2 log K 2 log a / a

    O2 S 2 eq FeO FeSlog P log P 2 log K 2 log a / a

  • Calculation of PSO2

    FeS(matte) + 3/2O2(g) = FeO(slag) + SO2(g)

    G0=-RTlnK

    K=( 2)/( 21.5)

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    Tridymite p.p.f

    Spinel p.p.f.

    Fe metal

    Cristobalite p.p.f

    Wustite p.p.f.

    FeO Fe2O3

    SiO2

    0.20.40.50.60.70.8

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.2

    0.1

    Fe3O4

  • 18

    Cu-Fe- S-O predominance diagram 1300oC

    Cu

    Cu2O

    Fe3O4

    FeS

    Fe

    Phase Field Boundaries

    Equilibria Reactions Equilibrium constant

    Matte-

    -slag

    p-q

    FeS (l) +

    1/2O2(g)

    = FeO (l)

    +1/2 S2(g)

    S FeO

    eq

    O FeS

    P aK

    P a

    1/2

    2

    1/2

    2

    Matte-

    -gas

    t-p

    1/2S2+O2=SO2 SO

    eq

    O S

    PK

    P P 2

    1/2

    2 2

    Matte -

    blister r-s

    Cu2Sliq =

    2Cublister + xSblister

    + (1-x)S2

    x x

    Cu blister S blister S

    eq

    Cu S

    a a PK

    a

    2 (1 )/2

    , , 2

    2

    Slag-

    -Fe metal

    r-q

    Fe+O2=FeO

    Slag-

    -solid

    magnetite

    s-t

    FeOslag + O2 =

    Fe3O4solid

  • 19

    Sulphur-Oxygen potential Diagram for the

    System Cu-Fe-S-O-SiO2 at 13000C

    0.5

    Converter

    conditionFlash Furnace

    condition

    Settler

    Condition

    Electric furnace

    Flash Smelting:

    3 stages in 1 process

    1. oxidising smelting

    - open system

    2. reducing settling

    - closed system

    3. Settling

  • Como obtener los parmetros de las ecuaciones qumicas?

    Experimentos

    o

    (Calculaciones basadas en termodinamica estadistica)

  • Como obtener los parametros de las ecuaciones quimicas?

    At a fixed temperature

    Fe(s,l) + 0.5O2 (gas)= FeO(s) Keq1=aFeO/(aFe*P0.5

    O2)

    Si conocemos Keq1,

    Fe(s, l) + 0.5O2 (gas)= FeO(FeO-SiO2 liquid solution)

    aFeO=aFe*P0.5

    O2*Keq1

  • Cuales son los rangos de temperatura y composicin

    donde las fases se encuentran en estado solido, liquido

    o gaseoso?,

    Diagramas de fases

  • 23

    Phase Diagrams are constructed to represent

    Ranges of conditions of stability of various phase assemblages

    Phase boundaries

    Sequence of equilibrium transformations as a function of system parameters

    Phases in equilibrium

    Proportions of phases

    and much more

  • 24

    Phase - FeO-Fe2O3Important Concepts:

    1. Phase vs Chemical Species

    2. Compound vs Component

    3.Solution phase, purecompound,stoichiometric phase,binary compound

    4. Bulk composition vs phasecomposition

    5. Proportions (amounts) ofphases vs compositionsof phases

    6. Phase fields (single phasefield, two-phase field

    7. Lever rule /mass balance

    8. Crystallisation path

    9. Liquidus, solidus

    10. Primary phase fields

    11. Phase rule

    12. Congruently vsincongruently meltingcompound

    13. Eutectic, peritectic

  • 25

    Phase Relations in FeO-Fe2O3-SiO2

    mass fraction

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    Tridymite p.p.f

    Spinel p.p.f.

    Fayalite

    Fe

    met

    al

    Hem

    ati

    te

    2 LiquidsCristobalite p.p.f

    1473

    15231573

    1623

    1673 172

    3

    1773

    1823

    187

    3

    192

    3

    Wustite p.p.f.

    FeO Fe2O3

    SiO2

    0.20.40.50.60.70.8

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.2

    0.1

    Fe O3 4

    Fe SiO2 4

    Liquidus

    Isotherms

    Ref:E. Jak, P.Hayes, A.D.Pelton, Decterov S., Int. J. of Materials Research (2007), 98(9), 847-854 .

    Spinel (Fe3O4)

  • Como construir los diagramas de fases?

    Experimentos

    o

    Simulacion (basado en datos experimentales)

  • EXPERIMENTAL APPROACH TO PHASE EQUILIBRIUM DETERMINATION

    I. Control of PO2 and PSO2 and T.

    II. Small samples suspended on a

    substrate

    III. Fast quenching to produce a well

    quenched glassy slag.

    IV. Analysis of matte, glassy slag and

    crystals by EPMA

  • Experimental equipment

    Specimen

    Pt wire (sample holder)

    Gas Inlet

    ControllerThermocouple

    Watch glass & O-ring seal

    Hot zone

    Workingthermocouple

    Aluminasheath covers Gas outlet

    Removable end

    Alumina tube

    Heating elements

    Quenching and

    sample preparation

    Continuum X-ray

    Characteristic X-Ray

    Auger Electrons

    Incident Electrons

    Fluorescent X-ray

    Secondary Electrons

    Back Scattered

    Electrons

    High

    Vacum

    Electron and

    X-ray detectors

    Sample

    1mm

    Quantitative composition of the

    1mm probe

    EPMA quantitative

    composition analysis

  • Methodology

    -The compositions of the phases (glass

    and solids) are then measured using a

    JEOL JXA 8200L (trademark of Japan

    Electron Optics Ltd., Tokyo) electron

    probe X-ray microanalyzer (EPMA) with

    Wavelength Dispersive Detectors

    (WDD).

    -The phase compositions are measured

    with EPMA with accuracy within 1 wt %

    or better for Fe, Si and Ca and within 0.1

    for Cu.

    PO2 of 10-8 atm

    1200 0C, Cu saturation

    FeOCaO

    SiO2

  • Como construir los diagramas de fases?

    simulacin

  • Ranges of stability for a system using the Gibbs Free Energy of

    phases at equilibrium

  • = FeOFeO + SiO2SiO2

    T +FeO,SiO2

    2FeO,SiO2

    Parameters of equations of Gibbs energy for the system FeO-Fe2O3-SiO2 and results of simulation

  • 33

    THERMODYNAMIC MODELLING

    FactSage

    Computer Package

    ------------------------------------

    GIBBS FREE ENERGY

    MINIMISATION SOFTWARE

    +

    THERMODYNAMIC DATABASES

    +

    INPUT/OUTPUT WINDOWS - BASED

  • 34

    FactSage

    THERMODYNAMIC DATABASES

    - Over 5000 stoichiometric compounds

    - Advanced solution models

    - Evaluated complex solutions

    -----------------------------------------------

    Multi-component Multi-phase Equilibria

    /GAS /

    /SLAG (molten oxides) /

    / MOLTEN SALTS (Cl, S, SO3, ) /

    /METAL ALLOYS /

    /SOLIDS /

    /AQUEOUS SOLUTIONS/

  • 35

    THERMODYNAMIC MODELLING:

    FactSage Thermodynamic Databases

    developed by PYROSEARCH in collaboration with CRCT:

    PbO ZnO CaO FeO Fe2O3 - Al2O3 - SiO2

    SiO2 - Al2O3 CaO FeO Fe2O3 -MgO -Na2O -K2O

  • 36

    THERMODYNAMIC MODELLING

    INPUT: OPERATIONAL PARAMETERS

    - COMPOSITION

    - TEMPERATURE

    - ATMOSPHERE (PO2)

    OUTPUT:

    - AMOUNTS AND COMPOSITIONS

    OF ALL PHASES

    FactSage

    HOMOGENEOUS

    AND

    HETEROGENEOUSS

    LAG VISCOSITY

    MODELS

  • Algunos diagramas utilizados en la

    pirometalurgia del cobre

  • 38

    Phase diagram of FeO-FeS-SiO2 Porque se presenta la separacin de fases?

    Basic Principle of Matte-Slag separation

    In the ternary FeS-FeO-SiO2 system, the addition of silica to a homogeneous FeS-FeO melt tends to separate into matte and slag Similar reaction occur in the presence of Cu

    CuFeS2+O2+SiO2=

    {Cu-Fe-S}+(FeO-SiO2)+SO2

    Slag

    FeO:54.8wt%

    FeS:17.9wt%

    SiO2:27.3wt%

    matte

    FeO:27.4wt%

    FeS:72.4wt%

    SiO2:0.16wt%

  • 39

    Binary system Cu2S-FeS

    wt% FeS

    1400

    1200

    1000

    800

    600

    400

    200

    Tem

    pera

    ture

    0C

    Matte

  • 40

    Binary system Cu-Cu2S

  • DEFINICIONES

    Equilibrium:

    Informal definition

    In all systems there is a tendency to evolve toward states in which the properties are

    determined by intrinsic factors and not by previously applied external influences. Such

    simple systems states are, by definition, time independent. They are called equilibrium

    states.

    Formal definition

    Particular states of simple systems that, macroscopically, are characterized completely by

    the internal energy U, and the mole numbers N1, N2,Nr of the chemical components.Operationally, a system is in an equilibrium state if its properties are consistently described by

    thermodynamic theory.

    The single, all encompassing problem of thermodynamics is the determination of the equilibrium state that eventually results after the removal of internal constrains in a closed,

    composed system (Herbert B. Callen, thermodynamics and an introduction to thermo-

    statistics).

  • Phase field: region of material in the phase diagram that is chemically uniform, physically distinct, and (often) mechanically separable of other phases.

    -Single phase field: Only one phase

    -Two phase field: Two phases coexist

    -Three phases: .

    Chemical species: atoms, molecules, molecular fragments, ions, etc., subjected to achemical process or to a measurement.

    Chemical compound: chemical substance consisting of two or more different chemical elements that can be separated into simpler substances by chemical reactions.

    Chemical component: Element contained in a phase

    Solution phase: solution is a homogeneous mixture composed of only one phase. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent

    Crystallisation path: Sequence of appearance of phases during cooling.

    DEFINICIONES

  • Liquidus: temperature (a curve on a phase diagram) above which a material is completely liquid, and the

    maximum temperature at which crystals can co-exist with the melt in thermodynamic equilibrium.

    Solidus: temperatures (a curve on a phase diagram) below which a given substance is

    completely solid (crystallized) in thermodynamic equilibrium.

    Primary phase: The crystal phase that crystallizes first on cooling a substance to its liquidus temperature.

    Congruent melting: occurs during melting of a compound when the composition of the liquid that forms is the

    same as the composition of the solid.

    Incongruent melting: occurs when a substance does not melt uniformly and decomposes into another

    substance.

    Eutectic reaction: Liquid=Solid 1+ Solid 2+Solid 3+.A liquid react at a fix temperature to yield solid phases

    Peritectic reaction: L+Solid 2+Solid 3+ =Solid 1A liquid and solid phase of fixed proportions react at a fixed temperature to yield solid phase.

    DEFINICIONES

  • 44

    References:

    H.G.Lee Chemical Termodynamics for Metals and Materials

    Phase Equilibria and Free energies pp.144..156

    Binary systems:pp. 166...204

    Ternary systems: pp.204..231

    D. R. F. West Ternary Equilibrium Diagrams, 1981

    Osborne and Muan, Phase equilibria among oxides in steel making 1965

    E.Levin, Phase Diagrams for Ceramists, 1964

    Akira Yazawa: Thermodynamic considerations of copper smelting, Canadian Metallurgical

    Quarterly, Vol. 13, Number 3 (1974)

    Akira Yazawa: Extractive Metallurgical Chemistry with Special Reference to Copper Smelting,

    28th Congress of IUPAC, Vancouver, August 1981

  • FIN PRIMERA SESIN

  • Que informacin requerimos para describir el proceso?

    Que reacciones ocurren durante el proceso?

    Como representar esta informacin en forma matemtica?

    Como representar la informacin en forma grafica?

    Como obtener la informacin necesaria para determinar los parmetros de la formulacin

    matemtica? Cual es la confiabilidad y que tan precisa es la informacin?

    Cuales son los rangos de temperatura y composicin donde las fases se encuentran en estado

    solido, liquido o gaseoso?, Porque se presenta la separacin de fases?

    Como sistematizar la informacin relacionada a las reacciones quimicas?

    Cuales son los mecanismos en la cintica de las reaccione?

  • 14/03/2015 47

    Reaction

    Shaft

    Slag Cu2O+FeO+SiO2

    Matte or liquid Cu metal

    Uptake

    Shaft

    Settler

    SO2 + N2

    CuFeS2

    FeAsS

    SiO2FeS

    Cu2S

    FeS2

    Cu2SO4

    Cu2S FeS

    Fe3O4

    Fe3O4Cu2SO4

    Gas/liquid & gas/solid

    reaction mechanisms

    in reaction shaftO2 + N2

    Slag

    Matte

    Cu2S

    Fe3O4

    SiO2

    SiO2CuFeS2

    FeS

    Liquid/liquid and

    liquid/solid reaction

    mechanisms in settler

    SO2

    Matte

    M

    Slag

    Matte

    Decantation

    and liquid/liquid

    reactions

    Fe3O4Cu2SO4

    SiO2

    Dust

    carry-over

    e.g. Smelting Flash Furnace

    complex reactor with many zones

  • Copper mineral processing,

    smelting and anodes

    production

    Copper ore

    (0.02-0.05 wt% As)

    Electrolyte copper

    and sub-products

    Tailings of

    flotation

    Final Gas

    Emissions of As

    Final Slag

    As in

    Sulphuric

    acid

    As in Dust

    Water

    contamination

    with As

    Selective flotation,

    leaching

    or

    roasting

    As disposal

    Leaching?

    or

    Smelting?

    As disposal

    Arsenic Weight %

    Sulphuric acid 27%

    Anode 21%

    Slag SCF 49%

    Gas emisin 3% (12

    tons.As/year)

    Total 100%

    (400 ton.As/year)

  • Fe-S-O-(As-Cu-Co-)

    El efecto del arsenic en el

    Sistema

    Lineas de liquidus y fases primarias

    C-Volatilizacion selective de arsenico

    Tostacion: Volatilizacion del arsenico, oxidacion y captura

    como polvos de oxidos de arsenico