INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

49
INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ULTRASONIDO USM 35X, BAJO NORMA AWSD 1.1 Luis Alejandro Suarez Enciso Johan Andrés Figueroa varón Universidad Distrital Francisco José de Caldas Facultad Tecnológica Tecnología en Mecánica Bogotá D.C. 2018

Transcript of INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

Page 1: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ULTRASONIDO

USM 35X, BAJO NORMA AWSD 1.1

Luis Alejandro Suarez Enciso

Johan Andrés Figueroa varón

Universidad Distrital Francisco José de Caldas

Facultad Tecnológica Tecnología en Mecánica

Bogotá D.C.

2018

Page 2: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ULTRASONIDO

USM 35X, BAJO NORMA AWSD 1.1

Luis Alejandro Suarez Enciso

Johan Andrés Figueroa varón

TESIS PARA OBTAR POR EL TITULO DE TECNÓLOGO MECÁNICO

MsC Carlos Bohórquez Ávila

Universidad Distrital Francisco José de Caldas

Facultad Tecnológica Tecnología en Mecánica

Bogotá D.C.

2018

Page 3: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

iii

CONTENIDO

RESUMEN ........................................................................................................................................................... 7

ABSTRACT .......................................................................................................................................................... 7

INTRODUCCIÓN .................................................................................................................................................. 8

PLANTEAMIENTO PROBLEMA .......................................................................................................................... 10

JUSTIFICACION .................................................................................................................................................. 10

OBJETIVOS ........................................................................................................................................................ 11

OBJETIVO GENERAL ........................................................................................................................................... 11 OBJETIVOS ESPECÍFICOS ...................................................................................................................................... 11

MARCO CONCEPTUAL ...................................................................................................................................... 12

SOLDADURA ..................................................................................................................................................... 12 ULTRASONIDO .................................................................................................................................................. 14 CARACTERÍSTICAS DEL ULTRASONIDO..................................................................................................................... 15

Onda ........................................................................................................................................................ 15 Ondas mecánicas .................................................................................................................................................. 15 Ondas electromagnéticas ..................................................................................................................................... 15 Ondas gravitacionales ........................................................................................................................................... 16 Velocidad de propagación .................................................................................................................................... 16 Amortiguación ...................................................................................................................................................... 16 Frente de onda ..................................................................................................................................................... 16 Frecuencia ............................................................................................................................................................ 17 Periodo ................................................................................................................................................................. 18 Longitud de onda .................................................................................................................................................. 18 Amplitud ............................................................................................................................................................... 19 Aplicaciones del ultrasonido ................................................................................................................................. 19

INTRODUCCIÓN AL CÓDIGO APLICABLE AWS D1.1....................................................................................... 22 Requerimientos del equipo .................................................................................................................................. 22 Requerimientos para los instrumentos de prueba ................................................................................................... 22 Rango de la pantalla ............................................................................................................................................... 23 Calibración del instrumento de prueba ................................................................................................................... 23

Unidades de búsqueda de haz recto ........................................................................................................ 23 Frecuencia ............................................................................................................................................................. 23 Dimensiones del transductor .................................................................................................................................. 23 Ángulos.................................................................................................................................................................. 23

Bloque de referencia IIW.......................................................................................................................... 23 EQUIPO Y ACCESORIOS ....................................................................................................................................... 24

Equipo de calibración Krautkramer USM 35X .......................................................................................... 24 Transductores o palpador de haz angular ............................................................................................... 26

MATERIALES ....................................................................................................... ¡ERROR! MARCADOR NO DEFINIDO.

MARCO PROCEDIMENTAL ................................................................................................................................ 27

Fase de soldadura .................................................................................................................................... 27 Geometría de las juntas soldadas ............................................................................................................ 29 Probeta número uno ................................................................................................................................ 29 Probeta número dos ................................................................................................................................ 30

FASE DE CALIBRACIÓN. ................................................................................................................................. 31 Prueba con transductor angular .............................................................................................................. 31

Page 4: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

iv

Bloques de Referencia .............................................................................................................................. 31 Barrido Horizontal.................................................................................................................................... 31 calibración de distancia ........................................................................................................................... 34 Punto de salida del haz ............................................................................................................................ 34 Nivel de Referencia .................................................................................................................................. 35

PROCEDIMIENTO DE INSPECCIÓN ......................................................................................................................... 36 INSPECCION DE LA PROBETA ................................................................................................................................. 36

Patrones de exploración .......................................................................................................................... 36 Discontinuidades longitudinales .............................................................................................................. 36 Movimiento “A” de exploración .............................................................................................................. 36 Movimiento “B” de exploración. .............................................................................................................. 37 Movimiento “C” de exploración. .............................................................................................................. 37 Discontinuidades Transversales. .............................................................................................................. 37 Distancias citadas en la inspección. ......................................................................................................... 38 Tamaño del reflector ................................................................................................................................ 39 Exploración .............................................................................................................................................. 39 Máximo de una indicación ........................................................................................................................ 39 Relación de la discontinuidad .................................................................................................................. 40

CRITERIOS DE ACEPTACIÓN SEGÚN AWS D1.1 ............................................................................................... 42 Criterios Generales. .................................................................................................................................. 42

INSPECCIÓN DE PROBETA ................................................................................................................................. 43

RESULTADOS .................................................................................................................................................... 46

CONCLUSIONES ................................................................................................................................................ 47

REFERENCIAS ............................................................................................. ¡ERROR! MARCADOR NO DEFINIDO.

Page 5: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

v

LISTADO DE IMÁGENES

Ilustración 1 cuadro sinóptico de los distintos procesos de soldadura a nivel industrial. ............................... 14 Ilustración 2 ejemplo de una onda ................................................................................................................... 15 Ilustración 3, representación gráfica del fenómeno de amortiguación de onda ............................................. 16 Ilustración 4, representación de un frente de onda, Fuente Física III ondas y luz, 1973 por editorial Norma 17 Ilustración 5, representación de una onda en frecuencias baja y alta respectivamente. ................................ 17 Ilustración 6, representación gráfica del periodo en una onda ....................................................................... 18 Ilustración 7, representación gráfica de la longitud de onda. .......................................................................... 18 Ilustración 8, diagrama de la amplitud de onda ............................................................................................... 19 Ilustración 9, aplicación del ultrasonido para el tratamiento de lesiones osteomusculares, en el tratamiento

de fisioterapia. ......................................................................................................................................... 20 Ilustración 10, imágenes de ultrasonido, para el control interno del cuerpo humano mediante ecografias o

sonografias .............................................................................................................................................. 20 Ilustración 11, representación del sonar de navegación (sonar activo y pasivo) ............................................. 21 Ilustración 12, esquema de un sistema de ultrasonido, en END. ..................................................................... 21 Ilustración 13 Portada del código AWS D1.1/M 2015 ...................................................................................... 22 Ilustración 14 Plano del bloque IIW, junto con sus medidas en sistema ingles de unidades y sistema

internacional de unidades ....................................................................................................................... 24 Ilustración 15 equipo de ultrasonido USM 35X, el cual se encuentra en los laboratorios de la universidad

distrital francisco José de caldas, fuente de autoría propia .................................................................... 25 Ilustración 16Palpador y Zapata para inspección AWS con haz angular. ......................................................... 26 Ilustración 17.WPS del procedimiento de soldadura realizado a las probetas otorgado por la empresa TECMO

S.A., fuente propia ................................................................................................................................... 27 Ilustración 18. equipo de soldadura Lincoln Electric, propiedad de la empresa TECMO S.A., con el cual se

realizaron las respectivas soldaduras. Fuente propia .............................................................................. 28 Ilustración 19. geometría de una de las probetas antes de ser soldada. fuente autoría propia ...................... 28 Ilustración 20 Esquema de probeta número 1. Fuente AWS D1.1 ................................................................... 29 Ilustración 21 Fotografía probeta número 1. Fuente. Elaboración propia ....................................................... 29 Ilustración 22 Esquema probeta número 2.Fuente AWS D1.1 ......................................................................... 30 Ilustración 23 Probeta numero dos completamente soldada. Fuente elaboración propia ............................. 30 Ilustración 24 Niveles de menú (Universidad Distrital FJDC, s.f,p3) ................................................................. 32 Ilustración 25 Equipo USM 35 UDFJDC. Fuente. Elaboración propia ............................................................... 33 Ilustración 26 Línea para identificar salida del haz en el palpador. Fuente: elaboración propia ..................... 35 Ilustración 27 posición para obtención del valor de b. Fuente. Elaboración propia ........................................ 35 Ilustración 28 datos arrojados por el equipo de ultrasonido USM 35X, durante el proceso de calibración de

distancia del agujero de referencia en el bloque IIW.autoria propia ...................................................... 36 Ilustración 29 Movimiento d exploración “A” .................................................................................................. 36 Ilustración 30 Movimiento de exploración B.................................................................................................... 37 Ilustración 31 Movimiento de exploración C .................................................................................................... 37 Ilustración 32 Movimiento de exploración D ................................................................................................... 38 Ilustración 33 Movimiento de exploración E .................................................................................................... 38 Ilustración 34 Distancias citadas en la inspección ............................................................................................ 38 Ilustración 35 ajuste de ganancia en inspección. Fuente. Elaboración propia ................................................. 40 Ilustración 36 Inspección cerca de la marca uno (1) ........................................................................................ 43 Ilustración 37 Imagen radiográfica cerca de la marca uno (1) ......................................................................... 44 Ilustración 38 Inspección cerca de la marca cero (0) ....................................................................................... 44 Ilustración 39 Inspección cerca de la marca cero (0) ....................................................................................... 44 Ilustración 40 Imagen radiográfica cerca de la marca cero (0) ........................................................................ 45

Page 6: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

vi

Ilustración 41 radiografía completa. Fuente. Elaboración propia .................................................................... 45

LISTA DE TABLAS

Tabla 1. velocidades de propagación del sonido en distintos materiales. ....................................................... 32 Tabla 2. Para selección de palpador. (Comité D 1 de Soldadura Estructural de la Sociedad Americana de

Soldadura (AWS) , 2015,p215) ................................................................................................................. 39 Tabla 3 atenuación por recorrido del haz. Fuente: elaboración propia ........................................................... 41 Tabla 4 evaluación de la falla con exigencia estáticamente cargada. Fuente. (Comité D 1 de Soldadura

Estructural de la Sociedad Americana de Soldadura (AWS) , 2015,p211) ............................................... 42 Tabla 5 evaluación de la falla con exigencia cíclicamente cargada. Fuente. (Comité D 1 de Soldadura Estructural

de la Sociedad Americana de Soldadura (AWS), 2015, p212 ................................................................... 42

Page 7: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

RESUMEN

El objetivo principal de este proyecto es el estudio de la técnica de ultrasonido industrial y

más concretamente aplicada a la fabricación de columnas y vigas de edificios y estructura

metálica que incorpora en sus estándares de calidad el código AWS D1.1 que a su vez es

de referencia en la norma NSR 10 colombiana.

El proyecto comprende una breve descripción de los fundamentos físicos de las ondas

ultrasónicas, su enfoque está dirigido a la aplicación práctica de la técnica de ensayo no

destructivo (END-UT) en placas de acero soldadas por arco eléctrico. Para ello se emplea

el equipo USM 35 krautkramer propiedad de la UNIVERSIDAD DISTRITAL FRANSICO

JOSE DE CALDAS facultad Tecnológica. En este trabajo se pretende realizar por medio de

tres probetas la inspección y caracterización de juntas soldadas, una de ellas con defectos

inducidos es objeto de ensayo por ultrasonido y radiografía industrial para posteriormente

hacer un comparativo de la discontinuidad encontrada.

ABSTRACT

The main objective of this project is the study of the technique of industrial ultrasound and

more specifically applied to the manufacture of columns and beams of buildings and metal

structure that incorporates in its quality standards the AWS D1.1 standard which in turn is

standard of reference in the Colombian NSR 10 standard.

The project includes a brief description of the physical fundamentals of ultrasonic waves,

but its approach is aimed at the practical application of the non-destructive test technique

(END-UT) in steel plates welded by electric arc. For this purpose, the USM 35 Krautkramer

team owned by the UNIVERSIDAD DISTRITAL FRANSICO JOSE DE CALDAS faculty is

employed. In this work we intend to perform the inspection and characterization of welded

joints by means of three test pieces, one of them with induced defects will be subject to

industrial radiography (END-RT) to later make a comparison of the discontinuity found.

Page 8: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

8

INTRODUCCIÓN

Los ultrasonidos son ondas acústicas de idéntica naturaleza que las ondas sónicas, pero

diferenciándose de éstas en que el campo de frecuencia se encuentra por encima de la

zona audible (20 - 20.000) Hz. Debido a los efectos que provoca en los sólidos, líquidos y

gases las perturbaciones sónicas, se ha dado una variedad de aplicaciones para éste

fenómeno, algunas de ellas son: señales submarinas, exploraciones del cuerpo humano,

estudios de difracción de la luz, limpieza de superficies, control de calidad en materiales a

pequeña y gran escala. En el ámbito de la ingeniería mecánica ha sido de gran ayuda para

la verificación en la integridad en las juntas soldadas identificando discontinuidades en las

propiedades físicas, caracterizando y confrontando valores obtenidos contra el código,

garantizando de esta forma se cumplan con una serie de características

fundamentales(condición)para su implementación.

El tipo de material que inspeccionaremos es de referencia ASTM 572 Grado 50 (también

en otros aceros se puede usar el “instructivo de uso y operación para el equipo de

ultrasonido”) un acero ampliamente utilizado en la industria de construcción tanto en

estructura de edificaciones como en armazones para maquinas. La configuración de la junta

soldada es a tope. Los espesores son de ½ pulgada y ¾ de pulgada.

Siendo tres probetas tenemos dos de ellas elaboradas por soldador calificado bajo los

parámetros AWS D1.1 capitulo 4 (Calificación de soldadores) con la firme intención de

lograr un producto de buena calidad en cuanto a presentación de la soldadura, linealidad

del cordón de soldadura y por su puesto sin discontinuidades en el interior de la soldadura

y tampoco en la interfaz soldadura – metal base. Para ello se contó con un equipo de

soldadura LINCON, un banco de trabajo adecuado y los parámetros de un WPS Calificado.

Con la tercera probeta se hicieron intencionalmente adversas las condiciones: trabajamos

fuera de los parámetros del WPS, mala limpieza, por citar algunos, de esta manera se

inducen defectos en la soldadura que deseamos en este caso particular.

La inspección ultrasónica es un método de ensayo no destructivo en el cual se generan

ondas sonoras de alta frecuencia, se introducen en el material a inspeccionar para detectar

discontinuidades internas. El ensayo ultrasónico está basado en las propiedades de

propagación, reflexión y refracción de las ondas ultrasónicas (vibraciones mecánicas) a

través del material inspeccionado. La aplicación más común de este ensayo se basa en la

reflexión del ultrasonido en las discontinuidades del material, lo que permite la detección y

evaluación de las mismas.

En relación con otros métodos de END, este tiene alto poder de penetración, lo que permite

la detección de discontinuidades profundas en soldaduras o materiales. Tiene alta

sensibilidad para detectar discontinuidades muy pequeñas, con mayor exactitud que otros

métodos de inspección (en cuanto a posición, tamaño, orientación, forma y tipo de

discontinuidad). Adicionalmente, la obtención de resultados inmediatos. Este método,

requiere de un alto conocimiento técnico para analizar los resultados, por lo que el ensayo,

la interpretación de los resultados y la elaboración y firma del informe, debe ser hecho por

un inspector Nivel II o Nivel III ASNT práctica recomendada ASNT-TC1A.

Page 9: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

9

Este documento tiene como componente fundamental el código AWS D1.1 y el texto de uso

y operación del equipo de inspección por ultrasonido krautkramer USM 35X. El código se

puede definir como: “este código cubre los requisitos de soldadura para cualquier tipo de

estructura soldada realizada con aceros al carbono y de baja aleación, utilizados en

construcción”. En la sección 6 del código, se encuentran los requisitos que exige este para

los distintos métodos de inspección a emplear en los elementos soldados, específicamente

el método técnico de rayos X llamado RT, inspección mediante sistemas de obtención de

imágenes por radiación y la detección de defectos empleando ultrasonido. La información

de interés en cuanto a ultrasonido se especifica en detalle en la sección F del capítulo 6, la

cual enuncia las pautas para la inspección de soldaduras, empleando un equipo de

ultrasonido (UT). Dicho método es con el cual se va a realizar la inspección de las probetas

y el equipo empleado es de referencia USM 35X. la sección F específica además lo

siguiente: “procedimientos y las normas establecidas deben regir el UT de las soldaduras

en ranura y su rango está en espesores que oscilan en 5/16 de pulgada y 8 pulgadas

[8 mm y 200mm]”. Además de ello esta sección específica: los requerimientos del equipo

de inspección y los transductores (palpadores); rango de la pantalla; la calibración del

equipo de ultrasonido; frecuencia de trabajo; posicionamiento y movimiento de los

respectivos transductores en el bloque IIW y en el sitio de trabajo.

El otro documento en el cual se basa este texto, es el manual de uso y operación de

inspección por ultrasonido krautkramer USM 35X, este documento, brinda las pautas en las

especificaciones técnicas del mismo (tales como las frecuencias, suministro de

alimentación eléctrica, especificación de la pantalla, etc.); cuidados y precauciones al

momento de ser utilizado el equipo, idioma del equipo (simbología, comandos de uso). Este

documento es vital importancia ya que nos permite darle un uso adecuado sin generar

ningún tipo de afectación al usuario ni al equipo.

Page 10: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

10

PLANTEAMIENTO PROBLEMA

Actualmente existen varios métodos de ensayos no destructivos (END). Los ensayos no

destructivos se emplean para detectar y caracterizar indicaciones en materiales diversos,

los más usuales, metales. Para este proyecto el material examinado es aceros

estructurales. Lo crítico de las indicaciones se evalúa con el código aplicable en cada caso,

ya sea API, ASME, AWS etc.

Una de las técnicas más usadas hoy es la inspección por ultrasonido ampliamente

empleada en la inspección de juntas soldadas para estructura metálica, calderas y

recipientes a presión. Si bien el ultrasonido tiene más aplicaciones son éstas las más

comunes en la industria.

En los últimos años, probablemente una década, la inspección por ultrasonido ha tenido

una evolución considerable, alcanzando un nivel muy alto en cuanto a detección y

visualización de las discontinuidades, a tal punto que algunos códigos aceptan sustituir el

ensayo de radiografía industrial por técnicas avanzadas de ultrasonido, que son más

prácticas y rápidas. Con el fin de dar a conocer esta tecnología y como primer paso hacia

el conocimiento de la inspección por ultrasonido realizamos un procedimiento que está

basado en el código AWS D1.1 y que permite inspeccionar juntas soldadas a tope de

penetración completa que hayan sido ejecutadas con cualesquiera de los siguientes

procesos de soldadura: FCAW, GMAW, SMAW Y SMAW.

JUSTIFICACION

El ultrasonido industrial ha sido un complemento importante en el desarrollo de actividades

que propenden el control y aseguramiento de la calidad en productos manufacturados a

mediana y gran escala. Gracias a sus aportes se han reducido costos, optimizado procesos

y hasta salvado vidas: al ser este un ensayo que permite ver la integridad de un elemento

que se encuentre en funcionamiento y estimar si debe ser reemplazado y/o reparado antes

de fallar en operación, se reduce considerablemente la posibilidad de incidente.

Es un hecho que los precios de los equipos han cambiado mucho, ahora tenemos un

incremento en los fabricantes, la oferta de equipos es mayor, hay nuevas marcas que entran

a competir con precios atractivos que son asequibles y han permitido que empresas

medianas adquieran estas tecnologías y puedan emplearlas en sus procesos de fabricación

como en labores de seguimiento y mantenimiento de elementos en operación. Actualmente

vemos el auge que está logrando y es evidente que se está consolidando como una

alternativa bastante prometedora para la industria nacional, es por esta razón que con esta

iniciativa esperamos generar el interés de la academia para que lo incorporen en el proceso

de formación. Es bastante probable que técnicos, tecnólogos he ingenieros tengan contacto

directo con este tema de los END, son tendencia en medianos y grandes proyectos de

construcción, en edificaciones y maquinas.

Page 11: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

11

OBJETIVOS

OBJETIVO GENERAL

Establecer las condiciones de trabajo necesarias y los pasos a seguir, antes (calibración) y

durante la inspección por ultrasonido convencional de haz angular según códigos y/o

estándares AWS D1.1 para determinar la presencia de discontinuidades y su evaluación

considerando la ubicación y el tamaño de las mismas.

OBJETIVOS ESPECÍFICOS

Detectar indicaciones en soldaduras o defectos bajo el código AWS D1.1

realizar un procedimiento de operación del equipo USM 35X, para inspección de

soldaduras.

definir para el estudio de análisis una serie de probetas para ensayos con el equipo

USM 35X.

Page 12: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

12

MARCO CONCEPTUAL

SOLDADURA

A este proceso en términos generales, se le conoce como un proceso de unión entre dos

piezas, ya sea con o sin material de aporte, con la finalidad de tener una sola pieza maciza,

en la cual, para hacer la unión de estas piezas, se hace a una temperatura de fusión, con

o sin la aplicación de presión.

En el campo industrial se han utilizado distintas formas de energía, dependiendo de la

necesidad de las piezas a unir. Estas formas de energía son cuatro las más destacadas,

las cuales son: eléctrica, química, mecánica y óptica

Para resumir los distintos procesos de soldadura, se hará por medio de un cuadro sinóptico,

en función de su fuente de energía principal (anteriormente mencionadas, las cuales son:

eléctrica, química, mecánica y óptica).

FUENTE DE

ENERGIA

ELECTRICA

ARCO

Un arco eléctrico producido entre la pieza y electrodo metálico

recubierto o un gas inerte o activo. La temperatura y corriente

eléctrica ocurridos en el arco son entre 5000 °C y 30000°C; y

entre 10 y 500 amperios respectivamente, y se constituye en

el sistema de obtención de calor.

RESISTENCIA La resistencia de los materiales al flujo de corriente

eléctrica genera calor. Este tipo de soldadura se

considera autógena, debido a que no necesita material

de aporte.

INDUCCION

Excitando una bobina con corriente alterna o alta frecuencia

o introduciendo en esta un metal conductor de electricidad,

se inducen en el metal corrientes eléctricas que originan,

debido a la resistencia del material, calentamiento del

mismo

Page 13: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

13

FUENTE DE

ENERGIA

QUIMICA

OXIACELITENICA

La combustión de acetileno (𝐶2𝐻2) en una atmosfera de

oxigeno (𝑂2) produce una llama que alcanza una

temperatura de 3500°C, este tipo de soldadura por lo

general suele llevar aporte de material.

TERMITA

Una mezcla de aluminio en polvo y óxido de hierro, al

encenderse, reacciona liberando calor; produciendo hierro

puro a una temperatura de alrededor de 2700°c, es muy

usado en la construcción y reparación de vías férreas.

DISOCIACION

DE

HIDROGENO

Las moléculas de hidrogeno están formadas por dos átomos

de hidrogeno, estos átomos se separan absorbiendo calor, al

quedar en contacto con el metal “frio” o en temperatura

ambiente, los átomos se unen nuevamente liberando calor

sobre la pieza de trabajo.

OPTICA

LASER

La generación de calor se logra por la energía de un rayo de luz

concentrado, al ser enfocado sobre la pieza de trabajo, por lo general

este tipo de soldadura se logra usando un gas de protección (helio o

argón).

RAYO DE

ELECTRONES

El calor se obtiene, por la energía suministrada a la pieza, al

ser bombardeada con un rayo dirigido de electrones de

pequeño diámetro y alta densidad.

Page 14: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

14

Ilustración 1 cuadro sinóptico de los distintos procesos de soldadura a nivel industrial.

Para este proyecto de grado se utilizó el proceso de soldadura por arco, para ser más

específicos, un proceso de soldadura FCAW (Flux-Core-Arc-Welding) para la obtención de

unas probetas las cuales servirán como objeto de inspección para uso con el equipo de

ultrasonido USM 35X, en la detección de fallas en sus cordones de soldadura bajo código

AWD 1.1.

ULTRASONIDO

Son ondas mecánicas, las cuales están por encima de la capacidad de audición del oído

humano, (alrededor de 20000 Hz), las cuales se propagan por medio de los materiales

mediante el movimiento armónico de sus moléculas.

Este tipo de ondas no solo se ve en el campo industrial o medicinal, sino también en la

naturaleza, ya que algunas especies animales como los murciélagos y delfines usan este

fenómeno físico, como forma de orientación a manera de radar, este fenómeno es conocido

como eco localización.

Actualmente el ultrasonido tiene una gran variedad de aplicaciones, que están en el campo

de la medicina, la cual se ve reflejada en las ecografías, tomografías, y tratamientos de

fisioterapia, en el campo industrial, va desde la limpieza de algunos componentes (como

inyectores de motores); soldadura de piezas (empaques comerciales); inspección de

materiales y soldaduras mediante ensayos no destructivos (END) y también en el campo

Aero-naval mediante el radar y el sonar.

FUENTE DE

ENERGIA MECANICA

FRICCION

El calor se obtiene, por la fricción generada entre un

elemento de rotación y uno estacionario sujetos a una

fuerza de contacto.

ULTRASONIDO Similar al proceso por fricción, pero el calor por

la fricción entre dos elementos en contacto uno

de los cuales, está vibrando a alta frecuencia.

Page 15: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

15

CARACTERÍSTICAS DEL ULTRASONIDO

Onda

Se dice que una onda: “Es el traslado de energía sin el movimiento o desplazamiento de

materia. Se trata de una agitación o perturbación que se desplaza en un ambiente

determinado, que luego de transmitirse, el medio vuelve a su estado inicial”.

Algunos ejemplos de onda son; las olas del mar, movimientos sísmicos, el sonido de las

cuerdas de una guitarra.

Ilustración 2 ejemplo de una onda

Clasificación de las ondas

Las ondas se clasifican dependiendo de:

La función del medio de propagación.

La función de la dirección.

La función del movimiento de las partículas.

La función de la periodicidad.

En función del medio de propagación, estas se clasifican en:

Ondas mecánicas

Las cuales se caracterizan por necesitar de un medio elástico (ya sea un líquido, gas o

solido), estas oscilan alrededor de un punto fijo, lo cual significa que no hay transporte de

materia durante la duración de dicha onda. La velocidad de este tipo de propagación se

puede ver afectada por factores como; la elasticidad, la temperatura y densidad. Algunos

ejemplos de este tipo de movimiento son: las ondas sonoras, ondas de gravedad (como la

creación de las nubes).

Ondas electromagnéticas

Éstas se propagan por el espacio sin necesidad de un medio, lo que les permite propagarse

en el vacío. Esto sucede porque este tipo de ondas se producen en un campo eléctrico en

relación a un campo magnético asociado. La velocidad promedio de este tipo de onda es

de alrededor de 300000 km/segundo. Algunos ejemplos de este tipo de onda son la

radiación infrarroja, los rayos x o los gamma.

Page 16: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

16

Ondas gravitacionales

Este es un tipo de perturbación del espacio- tiempo, producido por un cuerpo masivo

acelerado. Este tipo de onda existe debido a propagación de una perturbación gravitatoria

en el espacio-tiempo y que se desplaza a la velocidad de la luz. Éste tipo de propagación

fue predicha por Albert Einstein en la teoría de la relatividad.

Velocidad de propagación

Es la velocidad a la cual una onda o perturbación se desplaza, dicha velocidad depende del

medio de propagación en el cual esta perturbación se esté desplazando, ya se presentan

mayores velocidades en medios como solidos o líquidos y menores velocidades en medios

gaseosos.

Amortiguación

Es el descenso de amplitud de una onda, esta se amortigua a medida que avanza, este

fenómeno se debe a dos causas, las cuales son la absorción y la atenuación. La atenuación

consiste a la pérdida de amplitud exclusivamente a una cuestión geométrica y se presenta

comúnmente en ondas esféricas; mientras que la absorción consiste en la relación entre la

energía absorbida por el material y la energía reflejada por el mismo.

Ilustración 3, representación gráfica del fenómeno de amortiguación de onda

Frente de onda

Supongamos que fijamos a una barra, uno junto a otro, varios resortes y sometemos la

barra a vibración. Idealmente todos los resortes van a vibrar de la misma manera y las

ondas propagadas a lo largo de los resortes van a ser iguales de manera que todos los

puntos situados a la misma distancia de la barra están moviéndose con igual velocidad y

en la misma dirección, es decir, están en fase. Si unimos por una línea imaginaria todos los

puntos que se encuentran en fase, decimos que esta línea imaginaria representa un frente

de onda

Page 17: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

17

Ilustración 4, representación de un frente de onda, Fuente Física III ondas y luz, 1973 por editorial Norma

Frecuencia

Es la medida en la cual se contabiliza las repeticiones por unidad de tiempo, para calcular

la frecuencia, se toman el número de repeticiones en un intervalo de tiempo establecido.

Esta es medida en el sistema internacional (SI), en hercios o Hertz [Hz].un hercio se

expresa de la siguiente forma:

[Hz] =1

[s]

Siendo: [s] como unidad de tiempo expresada en segundos

La frecuencia se expresa de la siguiente forma:

f =v

λ

Siendo:

f: frecuencia

v : velocidad de propagación de la onda

λ : longitud de onda

Ilustración 5, representación de una onda en frecuencias baja y alta respectivamente.

Page 18: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

18

Periodo

Es el tiempo requerido por una perturbación, para que esta complete un ciclo completo.se

simboliza con Τ , es el inverso a la frecuencia de onda, este se expresa así:

Τ =1

f

Dónde:

Τ: es el periodo

f : es la frecuencia

Ilustración 6, representación gráfica del periodo en una onda

Longitud de onda

Es la distancia real que recorre una perturbación en un intervalo de tiempo, ésta se mide

en el sistema internacional (SI), en unidades de longitud expresadas en metros (m). Esta

medida es representada por la letra λ y es inversamente proporcional a la frecuencia de

onda. Se representa mediante la siguiente ecuación:

λ =v

f

Dónde:

λ ∶ es la longitud de onda.

v : es la velocidad de propagación de onda.

f : es la frecuencia de onda.

Ilustración 7, representación gráfica de la longitud de onda.

Page 19: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

19

Amplitud

Es una medida de variación máxima con el desplazamiento de la onda, que varía con el

tiempo, gráficamente se nota como el pico más alejado de la onda a un punto de referencia.

La amplitud dependiendo del tipo de onda, se mide en voltios si es una onda eléctrica; si es

una onda luminosa se mide en candelas, pero para nuestro caso , como es una onda

mecánica , la cual es producida por un instrumento, las unidades de medida en este caso

es en unidades de longitud (m).

Ilustración 8, diagrama de la amplitud de onda

Aplicaciones del ultrasonido

El ultrasonido actualmente tiene una gran variedad de aplicaciones, que van desde el

campo de la medicina, el campo de navegación, el campo industrial (que es en cual este

documento se encamina) y también en el campo de la localización se encuentra el

ultrasonido como uno de los sentidos de algunas especies animales (tales como los

murciélagos).

Uno de los campos que le ha dado un uso masivo al ultrasonido ha sido el campo de la

medicina, ya que el ultrasonido se utiliza como un método no invasivo para la detección de

anomalías en el cuerpo humano además de ser útil para el monitoreo de las mujeres en

estado de gestación, a estas técnicas médicas se les conoce como ecografías o

sonografias. Además de servir como un equipo para el diagnóstico, el ultrasonido es

también utilizado para el tratamiento de lesiones musculares y lesiones de riñones las

fisioterapias sirve como un antinflamatorio y reductor de dolores en músculos internos. En

el campo de la nefrología, es muy usado para el tratamiento de la litiasis renal.

Page 20: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

20

Ilustración 9, aplicación del ultrasonido para el tratamiento de lesiones osteomusculares, en el tratamiento de fisioterapia.

Ilustración 10, imágenes de ultrasonido, para el control interno del cuerpo humano mediante ecografias o sonografias

En el campo de la navegación, la gran mayoría o por decir todos los barcos, utilizan como

uno de sus instrumentos vitales el sonar, o también conocido como Round Navegación and

Ranging, por sus siglas en inglés, es un instrumento que utiliza ondas ultrasónicas para la

navegación, detección de objetos sumergidos o también para la comunicación entre naves

o también en el mundo de los animales marinos. El sonar usa entre sus principios básicos

el efecto Doppler, ya que el sonar tiene un emisor receptor en las señales que este envía

mediante pulsos, a este tipo de sonar se le es conocido como radar activo, mientras que el

sonar pasivo es aquel que solo recibe señales, pero mas no las transmite.

Page 21: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

21

Ilustración 11, representación del sonar de navegación (sonar activo y pasivo)

Ya en el campo industrial el uso que se le ha dado al ultrasonido va desde el campo

automotriz, la soldadura (como antes se había explicado), y por sobre todo en la rama de

la inspección de materiales. En el campo automotriz se hace uso del ultrasonido para la

limpieza de partes de motores, tales como carburadores, sistemas de inyección de

combustible. En el campo de las soldaduras, la soldadura ultrasónica es un método

relativamente nuevo, en este método no se requiere material de aporte, se usan frecuencias

que oscilan entre los 20 KHz y los 40 KHz, dependiendo del tipo de materiales a unir. Las

piezas que se sueldan mediante este método son los faros traseros de automóviles, cintas

de alta resistencia, turbinas para bombas hidráulicas, conectores hospitalarios, trajes

impermeables y también para la inserción de metales en plásticos.

Ya haciendo una aproximación a lo que va encaminado este proyecto de grado, el

ultrasonido, se ha utilizado en la industria desde hace más de 60 años para la realización

de END (ensayos no destructivos).” Cuya función principal es detectar defectos, fallas,

fisuras y toda suerte en materiales sólidos”. El ultrasonido para este caso se basa en sus

mediciones con la amplitud y el tiempo de retardo de la señal emitida por el equipo. Esto

permite detectar el tamaño y el lugar específico de las anomalías que se pueden presentar

en los materiales.

Ilustración 12, esquema de un sistema de ultrasonido, en END.

Page 22: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

22

INTRODUCCIÓN AL CÓDIGO APLICABLE AWS D1.1

La definición formal de este código es: “este código cubre los requisitos de soldadura para

cualquier tipo de estructura soldada realizada con aceros al carbono y de baja aleación,

utilizados en construcción”

Ilustración 13 Portada del código AWS D1.1/M 2015

Este proyecto de grado se basa en la sección 6 del código AWS D1.1, ya que la sección 6

contiene todos los requerimientos en la parte F para las calificaciones y responsabilidades

del inspector, criterios de aceptación para discontinuidades y procedimientos de ensayo no

destructivo por ultrasonido END- PU. “Los procedimientos y las normas establecidas en la

Parte F deben regir el UT de las soldaduras en ranura y entre haz de ultrasonido en

espesores de 5/16 pulgadas y 8 pulgadas [8 mm y 200 mm]” (Comité D 1 de Soldadura

Estructural de la Sociedad Americana de Soldadura (AWS) , 2015,p.200)

Bajo el código de soldadura AWS D1.1 el equipo de ultrasonido, debe cumplir ciertos

parámetros, los cuales son los siguientes:

Requerimientos del equipo: El instrumento UT deberá ser del tipo pulso eco adecuado

para usar con transductores que oscilen en frecuencia entre 1 y 6 MHz, la pantalla deberá

ser un escáner rectificado de video tipo A.

Requerimientos para los instrumentos de prueba

Los instrumentos deberán incluir estabilización interna para que después del calentamiento

no ocurra una variación en respuesta mayor a 1 dB, con un cambio de voltaje de 15%

nominal en la fuente o, en el caso de una batería, a través de la carga de vida operacional.

Page 23: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

23

Rango de la pantalla

El rango dinámico de la pantalla del instrumento deberá ser tal que una diferencia de 1

dB de amplitud pueda ser detectada de forma fácil en la pantalla.

Calibración del instrumento de prueba

El instrumento de prueba deberá tener un control de aumento calibrado ajustable en

pasos discretos de 1dB o 2 dB en un rango de al menos 60 dB.

Unidades de búsqueda de haz recto

Los transductores de unidades de búsqueda de haz recto (onda longitudinal) deberán tener

un área activa de no menor a ½ pulg2 (161.3 mm2) ni más de 1 pulg2 (645 mm2), dicho

transductor deberá ser redondo o cuadrado.

Si los transductores son de búsqueda de haz angular, estos elementos deberán cumplir con

los siguientes requisitos.

Frecuencia

La frecuencia del transductor deberá ser entre 2 y 2.5 MHz.

Dimensiones del transductor

El cristal del transductor deberá ser de forma cuadrada o rectangular y puede variar de 5/8

de pulgada. a 1 pulgada. (15 a 25 mm) de ancho y de 5/8 a 13/16 pulgada. (15 a 20 mm)

de altura.

Ángulos

la unidad de búsqueda (transductor) deberá de producir un haz de sonido en el material a

ensayar dentro de más o menos 2° de uno de los siguientes ángulos adecuados: 70°, 60°

o 45°.

Bloque de referencia IIW

Para la calibración del equipo en si deberá de utilizarse un bloque IIW .El cual es como

muestra la siguiente imagen. (Comité D 1 de Soldadura Estructural de la Sociedad

Americana de Soldadura (AWS) , 2015).además de ello el código enuncia :”cualquiera de

los bloques de referencia tipo UT del International Institute Of Welding (IIW), puede ser

usado como el estándar para la calibración de distancia y sensibilidad, siempre que el

bloque incluya el agujero de diámetro de 0.060 pulgadas. [1.5 mm] “y aparte de ello,” los

bloques de tipo IIW deben estar en conformidad con ASTM E 164”.

Page 24: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

24

Ilustración 14 Plano del bloque IIW, junto con sus medidas en sistema ingles de unidades y sistema internacional de unidades

EQUIPO Y ACCESORIOS

Equipo de calibración Krautkramer USM 35X

El equipo que se utilizó para realizar los objetivos plasmados en esta monografía, es el

equipo de ultrasonido USM 35X, el cual es un equipo que se diseñó en un tamaño pequeño

y compacto, con la función principal de realizar trabajos universales de verificación

ultrasónica y además de ello, para cumplir funciones tales como:

Localización y evaluación de defectos de material.

Mediciones de espesores de pared.

Almacenamiento de datos y documentación de resultados.

Para realizar dichas tareas este equipo, trabaja a frecuencias que van desde 0.5 MHz a 20

MHz, con un campo de calibración máximo de 10 metros de acero.

Además de ello, este equipo de inspección ultrasónica, posee ciertas características

especiales, las cuales son:

Peso bajo de 2.2 kg (incluyendo la batería de ion de litio) y de tamaño compacto.

Carcaza o cubierta protectora del instrumento a prueba de agua (impermeable)

Tiempo largo de operación superior a 12 horas, por medio de la batería de ion de

litio, con facilidad de recarga interna o externa.

Dos compuertas independientes para la medición exacta del espesor de pared

desde la superficie superior de la pieza hasta el primer eco, o entre dos ecos de

pared posterior, incluyendo la medición sobre piezas con recubrimiento con una

resolución de 0.01mm hasta 100mm, especialmente en piezas de acero.

Pantalla a color de 5.7”, ¼ de VGA-TFT para mostrar señales digitalizadas (320 x

240 pixeles, 115 x 86 mm)

Interface VGA para la conexión a un monitor externo.

Memorias de datos, con 800 juegos de datos, incluyendo descripción alfanumérica,

y la posibilidad de documentar por medio de una impresora.

Page 25: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

25

Frecuencia de repetición de pulsos variable en 10 pasos para evitar ecos fantasmas

cuando se inspeccionan piezas grandes o largas.

Rango de calibración aumentado hasta 9999 mm (en acero), dependiendo de la

frecuencia.

Modo de presentación de la señal: onda completa, media onda positiva, media onda

negativa y radiofrecuencia.

Ilustración 15 equipo de ultrasonido USM 35X, el cual se encuentra en los laboratorios de la universidad distrital francisco José de caldas, fuente de autoría propia

Page 26: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

26

Transductores o palpador de haz angular

“Los transductores de haz angular están compuestos de un transductor de haz recto y una zapata angular, pueden presentarse como dos elementos o como una sola unidad integrada según AWS 6.21.7. La frecuencia debe estar en un rango de 2MHz a 2,5MHz inclusive según AWS 6.21.1. Los transductores pueden ser de forma cuadrada o rectangular con un largo entre 15 y 25 mm y un ancho entre 15 y 20 mm; la proporción entre el ancho y la altura será máxima de 1.2 a 1.0 y mínima de 1.0 a 1.0 según AWS 6.21.7.2” (Comité D 1 de Soldadura Estructural de la Sociedad Americana de Soldadura (AWS D1.1) , 2015,p201)

Ilustración 16Palpador y Zapata para inspección AWS con haz angular.

MATERIALES

Los materiales e insumos usados para llevar a cabo el procedimiento de soldadura,

calibración del equipo USM 35X y revisión de las respectivas probetas por medio de un

ensayo de ultrasonido (UT) y de radiografía (RX) son los siguientes:

Probetas de acero A 572 grado 50 en espesores de ½ y ¾ de pulgada

Soldadura de especificación AWS.A.5.18, clasificación ER70S-6

Gas de aporte CO2-Ar-O2. Composición en la siguiente proporción: 90% Ar, 8%CO2,

2% O2

Boquilla del soldador de 5/8 de pulgada

Equipo de soldadura LINCON multipropósito

Acoplante para inspección (gel o celulosa)

Page 27: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

27

MARCO PROCEDIMENTAL

Fase de soldadura

Se procede a realizar la soldadura en las probetas. Los parámetros empleados de voltaje,

velocidad de avance y distancia de la tobera, según WPS propiedad de TECMO S.A

suministrado con fines académicos.

Ilustración 17.WPS del procedimiento de soldadura realizado a las probetas otorgado por la empresa TECMO S.A., fuente propia

Page 28: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

28

Ilustración 18. equipo de soldadura Lincoln Electric, propiedad de la empresa TECMO S.A., con el cual se realizaron las respectivas soldaduras. Fuente propia

Ilustración 19. geometría de una de las probetas antes de ser soldada. fuente autoría propia

Page 29: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

29

Geometría de las juntas soldadas

Se emplearon dos probetas que varían su geometría en la preparación de la junta y también

en los espesores, una de ellas, la numero uno (1) con defectos inducidos es objeto de

radiografía. El número dos y tres se pretenden integras con el ánimo de ser utilizadas en

prácticas.

Los siguientes son los esquemas de las probetas reales completamente terminadas y

preparadas para realizar la inspección por ultrasonidos

Probeta número uno

Probeta número uno de espesor media pulgada y bisel en V sencilla con hombro (f) de tres

milímetros 3mm. La separación de la raíz (R) es de tres milímetros (3).

Ilustración 20 Esquema de probeta número 1. Fuente AWS D1.1

Ilustración 21 Fotografía probeta número 1. Fuente. Elaboración propia

Page 30: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

30

Probeta número dos

Probeta número dos, tiene un espesor de ¾ de pulgada con diseño de junta V doble y un

valor de hombro (f) de cero milímetros (0mm). Separación de raíz (R) tres milímetros (3

mm)

Ilustración 22 Esquema probeta número 2.Fuente AWS D1.1

Ilustración 23 Probeta numero dos completamente soldada. Fuente elaboración propia

Page 31: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

31

FASE DE CALIBRACIÓN.

Prueba con transductor angular

“La calibración con transductor angular será realizada conforme a AWS D1.1 - 6.23.4”, la cual dice: “ Con el uso de un bloque de calibración aprobado, cada unidad de búsqueda de haz angular debe ser verificada después de cada ocho horas de uso para determinar que la cara de contacto esté plana, que el punto de entrada del sonido sea correcto y que el ángulo de haz se encuentre dentro de la tolerancia permitida de más o menos 2°”(Comité D 1 de Soldadura Estructural de la Sociedad Americana de Soldadura (AWS D1.1) , 2015,p202)

Bloques de Referencia. Los bloques de referencia para la calibración del equipo serán los descritos en AWS D.1.1 – 6.22. El principal bloque será el IIW y como bloques alternativos los descritos en AWS Anexo H. Barrido Horizontal. “El barrido horizontal será ajustado para representar la distancia recorrida del sonido usando el bloque IIW o el bloque alternativo DSC. La escala de calibración en la pantalla será de 5 pulgadas (125 mm) o 10 pulgadas (250 mm), cualquiera que sea más apropiado. Si la configuración o el espesor de la soldadura a inspeccionar lo requieren, la escala de calibración de la pantalla será de 15 pulgas o 20 pulgas (400 mm o 500 mm). Para el ajuste de la distancia recorrida en la pantalla se posicionará el transductor según lo descrito en AWS D1.1 – 6.24.5.1” (Comité D 1 de Soldadura Estructural de la Sociedad Americana de Soldadura (AWS D1.1) , 2015,p202)

Velocidad de propagación del sonido en el material.

Este factor de la velocidad de propagación del sonido, es un factor crucial a la hora de calibrar el dispositivo, ya que dependiendo del material en el cual se va a trabajar, se debe tener en cuenta de que el sonido dependiendo de dicho material, va moverse rápido o más lento.

Aunque al estar sujetos con la norma AWS D1.1. esta norma está sujeta para aceros bajos al carbono especiales para el sector de construcción de edificios, la velocidad a tener en cuenta es de 3218 m/s., pero como este equipo puede realizar ensayos de inspección por ultrasonido en muchos más materiales, a continuación, la siguiente tabla mostrara algunas velocidades de propagación usados en la industria.

Page 32: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

32

MATERIAL V (m/s)

Hierro (dulce) 5960

Fundición de hierro 4990

Aluminio 6350

Titanio 6100

Magnesio 5790

Cobre 4660

Plata 3600

Acero al carbono (1018) 5920

Acero al carbono (4340) 5850

Acero inoxidable 5660

Tabla 1. velocidades de propagación del sonido en distintos materiales.

Niveles de manejo equipo del equipo de ultrasonido USM 35X

Ilustración 24 Niveles de menú (Universidad Distrital FJDC, s.f,p3)

.

Page 33: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

33

Instrucciones de calibración del equipo USM 35X

El primer paso en la calibración es llevar a cabo el barrido horizontal, también conocido

como calibración distancia:

Para ello, nos ubicamos en la primera columna del nivel uno (campo) y

seleccionamos 250mm. como se ve en la ilustración 24.

La velocidad de entrada para palpador angular cualquiera sea su ángulo, será de

3218 m/s. Si estamos trabajando con acero, para otros metales hay otros valores

de velocidad.

En la tercera columna del primer nivel ajustamos la frecuencia que corresponde a

2.5 MHz ya que el palpador AWS que usamos tiene esa frecuencia. Como se ve en

la ilustración 24

En la cuarta columna del primer nivel de menú tenemos el inicio de compuerta y el final de la misma, esta se ajusta 35.00mm y 60.00mm respectivamente. La altura de la compuerta será de 50% ±5%.

En el segundo nivel del menú columna uno (CAL) le damos 4 pulgadas a la

referencia 1 y 9 pulgadas a la referencia 2. Se hace la conversión a milímetros si le

es más cómodo al operador (recomendado).

En el segundo nivel la columna 3 (TRIG) introducimos el ángulo del palpador

utilizado, para espesores mayores de 8 mm y menores de 38 mm emplearemos el

palpador de 70 grados.

Ilustración 25 Equipo USM 35 UDFJDC. Fuente. Elaboración propia

Page 34: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

34

calibración de distancia

El instrumento será ajustado para tener indicaciones a 4 pulgadas y 9

pulgadas para un bloque tipo 2 que es el que dispone la Universidad. También

cumplen otros bloques, pero nos referiremos al IIW tipo 2 exclusivamente.

El transductor será ubicado en la posición “D” sobre el bloque IIW, para cualquier ángulo. (Ángulo de 70 grados para este caso)

El transductor será movido hasta visualizar la máxima indicación del radio.

Se dirige al segundo nivel del menú en la columna uno (CAL) y obtura ENTER

en la primera referencia introducida en el paso anterior: 4 pulgadas o

101.6mm. El equipo arrojará un mensaje diciendo que ya quedó grabada la

primera referencia.

El transductor será movido hasta visualizar la máxima indicación del radio en

el segundo eco o indicación en la pantalla.

Se dirige al segundo nivel del menú en la columna uno (CAL) y obtura ENTER

en la segunda referencia introducida en el paso anterior: 9 pulgadas o

228.8mm. El equipo arrojará un mensaje que da por terminada la calibración.

Otros modelos más antiguos no tienen esta calibración automática y es más

dispendioso calibrar, afortunadamente el USM 35X posee calibración

automática.

Punto de salida del haz

El transductor será ubicado en la posición “D” sobre el bloque IIW, para cualquier ángulo. (Ángulo de 70 grados para este caso)

El transductor será movido hasta visualizar la máxima indicación del radio. El sitio de coincidencia con la línea de indicación del centro del radio del bloque será el punto de salida del haz del transductor.

estableciendo el punto de salida del haz en el palpador se tiene que a partir

de ese punto se tomará la distancia para ubicar las eventuales indicaciones

que se den en una inspección.

Page 35: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

35

Ilustración 26 Línea para identificar salida del haz en el palpador. Fuente: elaboración propia

Nivel de Referencia El nivel de referencia de sensibilidad usado para la evaluación de discontinuidades (“b” en el reporte de ultrasonido) será obtenido calibrando el control de ganancia (atenuador) hasta llevar el eco del agujero de referencia a una altura del 50% ±5%

Ilustración 27 posición para obtención del valor de b. Fuente. Elaboración propia

Page 36: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

36

Ilustración 28 datos arrojados por el equipo de ultrasonido USM 35X, durante el proceso de calibración de

distancia del agujero de referencia en el bloque IIW.autoria propia

PROCEDIMIENTO DE INSPECCIÓN

INSPECCION DE LA PROBETA

Patrones de exploración

Es importante definir patrones de barrido en el material inspeccionado para explorar lo

mejor posible todo el volumen de soldadura.

Discontinuidades longitudinales

Movimiento “A” de exploración

El transductor debe ser girado sobre su eje hacia la derecha y hacia la izquierda con un ángulo de 10°

Ilustración 29 Movimiento d exploración “A”

Page 37: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

37

Movimiento “B” de exploración.

El transductor debe acercarse y alejarse de la soldadura que se está inspeccionando

Movimiento “C” de exploración.

La distancia de progresión “C” debe ser la mitad del ancho del transductor

Discontinuidades Transversales.

Soldaduras esmeriladas a ras.

Para la detección de discontinuidades transversales en soldaduras esmeriladas a ras será usado el patrón de exploración “D”

Ilustración 31 Movimiento de exploración C

Ilustración 30 Movimiento de exploración B

Page 38: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

38

Soldaduras no esmeriladas.

Para la detección de discontinuidades transversales en soldaduras no esmeriladas, se deberá usar el patrón de exploración “E”, donde el ángulo “e” será de 15% máximo.

Ilustración 33 Movimiento de exploración E

Distancias citadas en la inspección.

Distancia “x” Se cita como la distancia que hay entre la línea imaginaria del centro del eje

longitudinal de la soldadura y la ubicación de la indicación. Ilustración 33

Distancia “y” Se cita como la distancia que hay desde el punto de referencia de la soldadura

hasta el inicio de la indicación. Ilustración 33

Distancia “z” Se cita como la distancia que hay entre la superficie de inspección y la

indicación, también se cita como profundidad. Ilustración 33

Distancia “L” Se cita como la longitud de la indicación. Ilustración 33

Ilustración 34 Distancias citadas en la inspección

Limpieza

Toda superficie a la que la unidad de exploración es acoplada, estará libre de salpicaduras de soldadura, suciedad, grasa, aceite, (otro que no sea el usado como

Ilustración 32 Movimiento de exploración D

Page 39: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

39

acoplante), pintura y escamas sueltas y será un contorno que permita un acople íntimo.

Acoplante

Es el material que será usado entre la unidad de exploración y la superficie del material a inspeccionar. El Acoplante será glicerina o goma de celulosa disuelta en agua de consistencia adecuada. Un agente humectante podrá ser adicionado si es necesario. Aceite industrial liviano podrá ser usado como acoplante en los bloques de calibración.

Tamaño del reflector

El procedimiento para la evaluación del tamaño de un reflector o discontinuidad será de

conformidad con 6.29.2 (haz angular) por la caída de 6 dB en los límites de la

discontinuidad. (Comité D 1 de Soldadura Estructural de la Sociedad Americana de

Soldadura (AWS D1.1) , 2015,p207)

Exploración

El ángulo de prueba y el procedimiento de exploración serán de acuerdo con lo mostrado

en AWS D1.1 sección 6. (Comité D 1 de Soldadura Estructural de la Sociedad Americana de

Soldadura (AWS) , 2015,p215)

Tabla 2. Para selección de palpador. (Comité D 1 de Soldadura Estructural de la Sociedad Americana de Soldadura (AWS) , 2015,p215)

Máximo de una indicación

Cuando la indicación de una discontinuidad aparece en la pantalla, la máxima altura

alcanzada por la discontinuidad será ajustada al nivel de referencia de calibración para

Page 40: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

40

producir una guía horizontal de la reflexión en la pantalla. Este ajuste será hecho con el

control de calibración de ganancia (atenuador), y la lectura de los decibeles del equipo será

usada como Nivel de Indicación “a” para calcular la “calificación de la indicación, d”.

Ilustración 35 ajuste de ganancia en inspección. Fuente. Elaboración propia

Siempre que sea posible, las soldaduras se deben inspeccionar por los dos lados del

cordón, sobre una cara de la pieza, para la detección de discontinuidades transversales o

longitudinales mediante el desplazamiento adecuado de la sonda.

La corrección por distancia "c" del informe se da en la tabla 2.

Cuando se detecta una indicación se utilizara la ganancia necesaria para llevar el eco a la

altura de la compuerta. Este valor es ¨a¨ en el informe.

Relación de la discontinuidad

Se obtiene como:

d = a − b − c

Siendo:

a máxima amplitud en la discontinuidad;

b valor de calibración

c atenuación por distancia (tomado de la tabla 2), como la Longitud de la indicación

se obtiene con el método de eco medio.

Cuando se desplaza el palpador en dirección a la indicación se puede tener una idea de su

tamaño o ancho con base al desplazamiento necesario para hacer bajar su altura. (Comité

D 1 de Soldadura Estructural de la Sociedad Americana de Soldadura (AWS), 28 de Julio

de 2015.pag.235)

Page 41: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

41

Tabla 3 atenuación por recorrido del haz. Fuente: elaboración propia

Page 42: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

42

CRITERIOS DE ACEPTACIÓN SEGÚN AWS D1.1

Criterios Generales.

Con base en el valor "d" obtenido en el informe de UT se debe definir la severidad de las fallas tabla 3.

Tabla 4 evaluación de la falla con exigencia estáticamente cargada. Fuente. (Comité D 1 de Soldadura

Estructural de la Sociedad Americana de Soldadura (AWS) , 2015,p211)

Tabla 5 evaluación de la falla con exigencia cíclicamente cargada. Fuente. (Comité D 1 de Soldadura

Estructural de la Sociedad Americana de Soldadura (AWS), 2015, p212

Page 43: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

43

INSPECCIÓN DE PROBETA

Se realiza inspección con palpador de 70 grados como lo indica el código AWS D1.1 para

espesores de 8 a 20 milímetros.

El barrido muestra varias indicaciones que son registradas por el equipo, la indicación está

cercana al 1 marcado con pintura sobre la placa, a esta marca se adhiere un número 1 de

plomo que será imagen en la radiografía, permitiendo así tener referencia para posicionar

las discontinuidades. La finalidad es confrontar la información que nos arroja el ensayo por

ultrasonido con la imagen obtenida de la radiografía realizada a la placa. De igual manera

se adhiere un número cero de plomo que se coloca justamente sobre el cero marcado con

pintura, de esta manera ya tenemos dos referencias para la ubicación de las

discontinuidades en la probeta.

Ilustración 36 Inspección cerca de la marca uno (1)

Page 44: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

44

Ilustración 37 Imagen radiográfica cerca de la marca uno (1)

Ilustración 38 Inspección cerca de la marca cero (0)

Ilustración 39 Inspección cerca de la marca cero (0)

Page 45: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

45

Ilustración 40 Imagen radiográfica cerca de la marca cero (0)

Ilustración 41 radiografía completa. Fuente. Elaboración propia

Page 46: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

RESULTADOS

Calculamos lo crítico de la indicación cerca al número uno (1) en la probeta. Aplicando la

ecuación 𝑑 = 𝑎 − 𝑏 − 𝑐 . (Comité D 1 de Soldadura Estructural de la Sociedad Americana

de Soldadura (AWS), 28 de Julio de 2015.pag.235). con el valor obtenido para d vamos a

la tabla 3 que es la menos exigente. Sustituyendo los valores obtenidos tenemos lo

siguiente:

𝑑 = 𝑎 − 𝑏 − 𝑐

𝑑 = 65 − 60 − 1

𝑑 = 4

Aplicando los criterios de aceptación del código, tabla 3 estructuras estáticamente

cargadas. Obtenemos que es Clase A: Cualquier indicación de esta categoría será

rechazada independientemente de su longitud. (Comité D 1 de Soldadura Estructural de la

Sociedad Americana de Soldadura (AWS D1.1) , 2015,p211) Por supuesto si es clase A

bajo la tabla 3 con mayor razón lo será para los criterios de aceptación de la tabla 4

estructuras dinámicamente cargadas que son más exigentes en la evaluación.

Haciendo la misma operación para la indicación cerca al cero (0) en la probeta tenemos:

𝑑 = 𝑎 − 𝑏 − 𝑐

𝑑 = 67 − 60 − 2

𝑑 = 5

Aplicando, los criterios de aceptación del código, tabla 3 estructuras estáticamente

cargadas. Obtenemos que es Clase A: Cualquier indicación de esta categoría será

rechazada independientemente de su longitud. (Comité D 1 de Soldadura Estructural de la

Sociedad Americana de Soldadura (AWS D1.1) , 2015,p211) Por supuesto si es clase A

bajo la tabla 3 con mayor razón lo será para los criterios de aceptación de la tabla 4

estructuras dinámicamente cargadas que son más exigentes en la evaluación.

Page 47: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

47

CONCLUSIONES

Una de las observaciones que consideramos más relevantes es la siguiente: las

técnicas de ensayo por ultrasonido como por radiografía industrial detectan las

discontinuidades o defectos (cuando se evalúa toman carácter de discontinuidad o

defecto según sea; con base en lo establecido por el código AWS D1.1). las dos

técnicas tienen limitaciones: a pesar de la alta sensibilidad del equipo de UT que es

entre otras su mayor valía, la imagen que arroja es de difícil interpretación. Por otra

parte, el ensayo con radiografía industria nos da una imagen que con algo de

práctica podríamos llegar a caracterizar relativamente fácil, no obstante, de ella solo

obtenemos una imagen en dos dimensiones y no tenemos manera de saber la

profundidad de la falla no así con el UT. En algunos puntos de la probeta el equipo

de UT hace lecturas que no se ven en la imagen radiográfica, probablemente por

ser sumamente pequeñas para definirse en la placa radiográfica (la sensibilidad de

esta técnica no es tan alta como si en el caso de UT).

Con base en los resultados obtenidos podemos afirmar que, si queremos garantizar

la calidad de soldadura en todo su volumen, el ensayo por ultrasonido es una

excelente opción siempre y cuando la geometría de la junta lo permita, es importante

recordar esta limitante del ensayo UT. En este trabajo de grado trabajamos con una

junta a tope un tipo de junta, considerada una de las más sencillas de inspeccionar)

El equipo de ultrasonido USM 35X, a pesar de no ser un modelo reciente, demostró

en los ejercicios de calibración e inspección, que es muy completo, eficaz y rápido

.al tener ayudas para el usuario final como lo son las funciones automáticas. Siendo

de gran ayuda para la enseñanza del método de inspección de soldadura por

ultrasonido para personas novatas.

El haber realizado un par de probetas, una con defectos y otra sana en su cordón

de soldadura, facilita la enseñanza en la calibración y uso del equipo USM 35X, ya

que sirven como comparación entre una soldadura sana y otra defectuosa.

Page 48: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

REFERENCIAS

Comité D 1 de Soldadura Estructural de la Sociedad Americana de Soldadura (AWS) .

(2015). Parte F Prueba ultrasónica (UT) de soldaduras en ranura . En S. A. (AWS), Codigo

de soldadura estructural - acero (pág. 200). Estados Unidos de América : American

Welding Society .

Comité D 1 de Soldadura Estructural de la Sociedad Americana de Soldadura (AWS). (28

de Julio de 2015). código de soldadura estructural en acero. Estados Unidos de Norte

América.

Garcia, V. (2013). Ultrasonidos Tecnica No Destructiva Para Estudios de Monumentos.

sevilla.

GE Inspection Technologies. (2007). USM 35X, manual tecnico e instrucciones de uso.

Madrid: GE Inspection Technologies.

infrasal. (s.f.). manual del soldador. san salvador: infrasal.

Martinez, J., Vitola, J., & Sandoval, S. (2007). Fundamentos Teorico- Practicos del

Ultrasonido. Bogota D.C.: Revista Tecnura, Universidad Distrital Francisco Jose de

Caldas.

NDT, e. (2018). elcometer NDT. Obtenido de Tabla de velocidades de materiales

predefinidos: https://www.elcometerndt.com/es/tabla-de-velocidades-de-materiales-

predefinidos.html

oxgasa. infrasal S.A. (2006). Manual del Soldador. San salvador: oxgasa.

Serway, R. A., & Jewett, J. W. (2008). Fisica Para Ciencias e Ingenieria. Ciudad de Mexico

D.F.: Cengage Learning.

Universidad Distrital FJDC. (s.f de s.f de s.f). Obtenido de SIRIS - Sistema Integrado de

Recursos Institucionales:

https://rita.udistrital.edu.co:23604/Documentos/Manuales/soldadura/usm_35x_2_espanol

.pdf

Veca, A., & Accolti, E. (2016). Ultrasonido Para Ingenieros y Estudiantes de Ingenieria.

San Juan : Universidad de San Juan.

West Arco S.A. (s.f.). Manual del Soldador. Bogota D.C.: West arco S.A.

Yugh, y., & Friedman, R. (2009). Fisica Universitaria volumen 1. Ciudad de Mexico D.F.:

Pearson Educacion.

Page 49: INSTRUCTIVO DE USO Y OPERACIÓN PARA EL EQUIPO DE ...

49

(GE Inspection Technologies, 2007) (NDT, 2018)