“UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

94
“UNIVERSIDAD NACIONAL DE INGENIERÍA” FACULTAD DE INGENIERÍA DE PETRÓLEO, GAS NATURAL Y PETROQUÍMICA TESIS “OPTIMIZACIÓN DEL EMPLAZAMIENTO DE POZOS DIRECCIONALES Y HORIZONTALES USANDO REGISTROS DE IMÁGENES EN TIEMPO REAL DE LAS HERRAMIENTAS LWD” Autor : Juan Carlos Rabanal Chavez TESIS DE GRADO PARA OPTAR POR EL TÍTULO PROFESIONAL DE INGENIERO DE PETRÓLEO. Lima, 2009

Transcript of “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

Page 1: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

“UNIVERSIDAD NACIONAL DE INGENIERÍA”

FACULTAD DE INGENIERÍA DE PETRÓLEO, GAS NATURAL

Y PETROQUÍMICA

TESIS

“OPTIMIZACIÓN DEL EMPLAZAMIENTO DE POZOSDIRECCIONALES Y HORIZONTALES USANDO

REGISTROS DE IMÁGENES EN TIEMPO REAL DE LASHERRAMIENTAS LWD”

Autor : Juan Carlos Rabanal Chavez

TESIS DE GRADO PARA OPTAR POR EL TÍTULOPROFESIONAL DE INGENIERO DE PETRÓLEO.

Lima, 2009

1

Page 2: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

2

Dedicatoria:

A Dios por derramar sus bendiciones

en cada paso de mi vida, a mi familia por

ser el pilar sobre el cual se contruye mi

futuro, a mi querida universidad a quien

debo mis conocimientos, y finalmente a

quienes me apoyaron constantemente en

la elaboración de mi tesis.

Page 3: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

INDICE

Prologo…………………………………………………………………………....... 11. Introduccion........................................................................................................... 22. Perforacion Direccional y Horizontal.................................................................... 3

2.1. Perforación Direccional................................................................................. 32.1.1. Locaciones Superficiales Inaccesibles............................................... 5

2.2. Perforacion Horizontal y sus Aplicaciones.................................................... 62.2.1. Incremento de Productividad.................................................................... 72.2.2. Fracturas Verticales.................................................................................. 92.2.3. Producción de Arena y Conificacion de Agua......................................... 10

2.3. Diseño de Pozos……………………....…………………………………..... 112.3.1. Definiciones.............................................................................................. 11

2.3.1.1. Profundidad del Pozo........................................................................... 122.3.1.2. Drift del Pozo....................................................................................... 122.3.1.3. Tool Face.............................................................................................. 122.3.1.4. Información de Referencia................................................................... 122.3.1.5. Hidráulica de Perforación.................................................................... 132.3.1.6. Torque y Arrastre................................................................................. 132.3.1.7. Patas de Perro....................................................................................... 132.3.1.8. Diámetros Óptimos............................................................................... 142.3.1.9. Estabilidad del Pozo.............................................................................. 14

2.4. Riesgos y Grados de Dificultad......................................................................... 152.5. Estimado de Costos de un Pozo....................................................................... 16

3. Registros de Resistividad......................................................................................... 183.1. Aplicaciones de la Medida del Registro de Resistividad................................. 18

3.1.1. Determinar la Presencia de Hidrocarburo en la Formacion....................... 193.2. Zonas de Invasion de Fluidos........................................................................... 20

3.2.1. Zona Lavada................................................................................................ 213.2.2. Zona de Transicion...................................................................................... 213.2.3. Zona Virgen................................................................................................. 22

4. Evolucion de la Tecnologia LWD........................................................................... 234.1. Primera Generacion.......................................................................................... 234.2. Segunda Generacion........................................................................................ 244.3. Tercera Generacion.......................................................................................... 25

5. Medidicion de la Resistividad de la Formacion.................................................... 275.1. Medida de la Corriente Cercana a la Broca...................................................... 275.2. Medicion de la Corriente en los Diferentes tipos fe Fluidos de Perforacion.. 29

5.2.1. Medicion de la Corriente en Lodo Conductivo........................................... 295.2.2. Medicion de la Corriente en Lodo no Conductivo...................................... 30

5.3. Profundidad de Investigación........................................................................... 316. Transmision de la Informacion en Tiempo Real..................................................... 32

6.1. Modo de Transmision de Informacion en Tiempo Real................................. 326.1.1. Requerimientos de La Fuente de Energia.................................................. 33

6.2. Desafios para la Transmision........................................................................... 336.3. Evolucion y Mejora del Sistema de Telemetria................................................ 34

7. Colocacion Óptima de Pozos................................................................................... 367. 1. Imagenes Azimutales........................................................................................ 36

7.1.1. Imágenes de Densidad Azimutal.................................................................. 367.1.2. Pantalla de Correlacion................................................................................. 37

I

Page 4: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

II

7.2. Imágenes de Resistividad.................................................................................. 397.2.1. Presentación de registros de Imagenes Resistividad en tiempo real.............. 397.2.2. Evaluación de las imágenes LWD y la herramienta FMI.............................. 40

7.3. Medicion de la Inclinacion de la Broca................................................................ 427.3.1. Evaluación de las Medidas de Inclinación de la Broca.................................. 43

7.4. Factores que Afectan las Herramientas................................................................ 447.4.1. Primer Factor.................................................................................................. 447.4.2. Segundo Factor............................................................................................... 457.4.3. Tercer Factor.................................................................................................. 457.4.4. Cuarto Factor.................................................................................................. 45

8. Aplicaciones del Servicio LWD.................................................................................. 468.1. Aplicación de la Medidicion de Inclinación de la Broca...................................... 46

8.1.1. Uso de la Tecnología de Medición de Inclinación LWD............................... 468.2. Aplicación en la Geonavegacion de Pozos........................................................... 47

8.2.1. Descripción del Problema y Necesidades Asociadas a la UbicaciónEstructural.................................................................................................................. 488.2.2. Geonavegacion de la Estructura Para la Identificación de Zonas de Interés.. 49

8.3. Aplicación de la Interpretacion Estructural de un Yacimiento combinando lasdiversas mediciones del servicio LWD........................................................................ 50

8.3.1. Análisis de los Modelos de Predicción para la Interpretación Estructural delYacimiento................................................................................................................. 51

8.3.1.1. Primer Modelado...................................................................................... 518.3.1.2. Segundo Modelado................................................................................... 528.3.1.3. Tercer Modelado....................................................................................... 538.3.1.4. Analisis del Registro LWD para el modelado final.................................. 538.3.1.5. Modelado de Correlacion Final............................................................... 54

8.4. Aplicación del Servicio LWD en el control de la Estabilidad de Pozos.............. 558.4.1. Uso de las Imágenes de Resistividad LWD.................................................... 568.4.2. Identificacion de Fracturas y Mecanismos de Falla....................................... 578.4.3. Relacion de Esfuerzos en el Pozo................................................................... 588.4.4. Analisis de las Imágenes para el Diagnostico Geomecanico del Pozo........... 598.4.5. Contribución de la Medicion del ECD Mediante LWD para un mejorAnalisis y Control de la Estabilidad del pozo........................................................... 62

9. Evaluacion Economica................................................................................................ 649.1. Etapa de Exploracion.......................................................................................... 66

9.1.1. Analisis Economico........................................................................................ 699.1.1.1. Estimado de Costos del Proyecto sin LWD.............................................. 699.1.1.2. Estimado de Costos del Proyecto con LWD.............................................. 71

9.2. Etapa de Desarrollo............................................................................................... 739.2.1. Modelo de Declinación de la Producción........................................................ 749.2.2. Modelo de Declinación Hiperbólica para el Analisis de la tendencia de laProduccion................................................................................................................. 759.2.3. Estado de Perdidas y Ganancias y Flujo de Caja Economico......................... 78

9.2.3.1. Analisis Economico del Proyecto sin el uso de LWD............................... 789.2.3.2. Analisis Economico del Proyecto con el uso de LWD.............................. 80

9.2.4. Analisis de los principales factores de rentabilidad del proyecto.................... 839.2.4.1. Primera Simulacion................................................................................... 839.2.4.2. Segunda Simulacion.................................................................................. 85

10. Concluciones y Recomendaciones................................................................................ 8811. Bibliografia....................................................................................................................90

Page 5: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

PROLOGO

Las herramientas de adquisición de registros durante la perforación (Logging While

Drilling - LWD) son usadas actualmente para optimizar los resultados de perforacion

producto de un mayor analisis y un mejor conocimiento de cada paso de las operaciones

de perforacion en tiempo real, ya que las herramientas estudiadas asi lo permiten.

Con el proposito de un mayor entendimiento del tema, este estudio fue dividido en 9

capitulos, en la introduccion se expresa en forma breve los objetivos de estudio de esta

tesis, el segundo capitulo describe el conocimiento que se tiene de la perforacion de pozos

direccionales y horizontales, sus aplicaciones, asi como la dificultad y limitaciones que

estos presentan para lograr los objetivos deseados. En el tercer capitulo se detalla en que

medida la operacion de perforacion influye en la caracterizacion geologica y petrofisica

del reservorio. En el cuarto capitulo se esquematiza la evolucion historica de las

herramientas LWD y sus aplicaciones. Como es que las herramientas estudiadas miden la

sensibilidad electrica de la formacion es detallada en el quinto capitulo, en el sexto

capitulo se explica la transmicion de la informacion hacia la superficie, luego con toda la

informacion necesaria se implementan los diversos servicios que son producidas con los

datos de las herramientas LWD descritos en el setimo capitulo. Las aplicaciones

mencionados en el soctavo capitulo se realizaron en diversos pozos en todo el mundo,

sirven de sustento tecnico para este estudio, finalmente el noveno capitulo contiene un

estudio economico detallado para analizar la rentabilidad del uso de las herramientas

LWD en la perforacion de pozos direccionales y horizontales.

Por el esfuerzo que contiene la elaboracion de este estudio quiero agradecer:

A mi orientador Oscar Cortegana por sus conocimientos compartidos y el valioso tiempo

que dedico a la elaboracion de mi tesis.

A mis amigos Jorge Dueñas, Jose Vasquez, Julio Laredo, Alex Ramirez, Edwin Tejada

Rodolfo Uribe y German Rondon por su amistad y por compartir sus conocimientos

profesionales.

1

Page 6: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

2

1. INTRODUCCION

Impulsada a mantener el ritmo de una economía cambiante y de las rápidas y constantes

Innovaciones que se observan en el campo de la perforación de pozos, la tecnología de

adquisición de registros durante la perforación ha madurado a su tercera generación en tan

sólo una década. Las primeras herramientas, introducidas a finales de la década de 1980,

proporcionaban mediciones direccionales y registros para una evaluación básica de la

formación, y servían como registros de respaldo en pozos desviados y verticales. En esa

época, las aplicaciones primarias son las correlaciones estratigráficas y estructurales entre

pozos cercanos y la evaluación básica de la formación. La adquisición de registros durante

la perforación aseguraba la obtención de datos básicos necesarios para determinar la

productividad y comerciabilidad del pozo. Así como también para mitigar el riesgo de la

perforación.

A medida que una creciente cantidad de yacimientos se explotaban con éxito, la industria

de exploración y producción comenzó a desarrollar yacimientos mas complejos y

marginales, más pequeños, mas delgados, fracturados y de baja calidad anteriormente

clasificados como pobres y en consecuencia, quedaban sin desarrollar. Actualmente, los

diseños de pozos que desafían tanto los aspectos técnicos como económicos y que eran

inexistentes hacen sólo unos cinco años situados en aguas profundas, pozos de alcance

extendido, horizontales y de tramos laterales múltiples, se utilizan en forma rutinaria para

maximizar la producción y las reservas de los yacimientos. Para llegar a estos yacimientos

de difícil acceso, más pequeños y de inferior calidad, la construcción de pozos tuvo que

evolucionar de los diseños geométricos a los pozos dirigidos y colocados en base a

información geológica.

Page 7: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

3

2. PERFORACION DIRECCIONAL Y HORIZONTAL

La perforación direccional es ampliamente utilizada en el procedimiento de perforación

Fue originalmente desarrollada por la necesidad de realizar un sidetrack para corregir

problemas de pesca de herramientas que no lograron sacarse del pozo, otras aplicaciones

igualmente importantes tuvieron desarrollo con el tiempo, tales como la perforación de

pozos dirigida a la parte alta del yacimiento así como secciones horizontales de largo

alcance cuyo objetivo fue el de optimizar la producción. Actualmente la perforación

direccional es aplicada en operaciones en mar adentro y en tierra. La tecnología y las

técnicas de perforación modernas permiten cualquier diseño de pozo razonable,

incluyendo pozos direccionales con alta inclinación y pozos horizontales de alcance

extendido para llegar a los objetivos de perforación deseados.

2.1. Perforación Direccional

La perforación direccional es el proceso de dirigir el pozo por una determinada

trayectoria a un objetivo deseado, el control de desviación del pozo es el proceso de

mantener el pozo dentro de algunos límites establecidos relativos al ángulo de

inclinación. La iniciativa de perforar los primeros pozos direccionales fue netamente el

asunto económico. El campo petrolero ubicado en la costa afuera de California fue el

lugar en donde se iniciaron las pruebas para los equipos y las técnicas de perforación

direccional así como para un grupo especial de personas llamadas “perforadores

direccionales”. Posteriormente los continuos descubrimientos de petróleo y gas

localizados en el golfo de México así como en otros países promovieron la expansión de

la tecnología de perforación direccional.

En muchos casos se han encontrado yacimientos de petróleo y gas debajo de centros

poblados, y la única manera de desarrollar dichos yacimientos en forma económica a

sido mediante el uso de la perforación direccional.

Realizar un Sidetrack de un pozo es otra de las aplicaciones de la perforación

direccional, este sidetrack puede hacerse con el propósito de evitar una obstrucción (un

pescado) en el pozo original o para explorar un horizonte de producción adicional en un

yacimiento adyacente al campo.

En la actualidad enormes presiones económicas y de medio ambiente han incrementado

el uso de la perforación direccional. Por ejemplo, en algunas áreas no es posible

Page 8: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

4

desarrollar un campo construyendo carreteras para accesar a una locación en superficie

que nos permita perforar un pozo vertical. En vez de esto, tal como en las plataformas

ubicadas costa afuera, cabe la necesidad de diseñar pozos en los cuales tengan objetivos

múltiples. Estos casos aumentan no solo la perforación direccional, sino que también los

diseños de las trayectorias de pozos están siendo cada vez mas complejos y la

perforación direccional se esta aplicando en situaciones y áreas donde este tipo de

perforación anteriormente no ha sido común. Por ejemplo, en el caso de los proyectos

geotermales se han perforado pozos direccionales con alcances horizontales hasta de

14000 pies y con objetivos mucho más profundos.

Conforme el costo de desarrollo del campo aumenta. En aguas profundas, zonas

remotas, medio ambientes hostiles, y zonas profundas de producción, la aplicación de la

perforación direccional también aumenta.

Usando las técnicas de perforación direccional se puede perforar pozos con el objetivo

de extender el área de drenaje del yacimiento, pues en el caso de un pozo vertical se

atraviesa el reservorio una sola vez, en cambio la perforación direccional aumenta la

cobertura considerablemente como se ilustrara más adelante.

Basándose en un pozo desviado de aproximadamente 15000 pies de profundidad, los

pozos con inclinación de 20° cubren en aproximadamente 3 millas el área del

yacimiento, la cobertura aumenta aproximadamente en 340 % con un ángulo de

inclinación de hasta 40°, incrementando el ángulo a 60° la cobertura en el yacimiento

aumenta aproximadamente el 200 % más que con el pozo desviado en 40°, la

perforación dirigida con un ángulo de 80° aumenta la cobertura aproximadamente en

130 % más que con 60 °, el 234 % más que la cobertura con 40° y el 820 % más que la

cobertura con 20°.

Page 9: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

5

Figura 1. Área de cobertura en la perforación direccional. (Short J.A. 1993)

2.1.1. Locaciones Superficiales Inaccesibles

Existen muchos casos en donde las locaciones superficiales son Inaccesibles, motivo

por el cual inhiben el desarrollo de pozos verticales. Algunas locaciones superficiales

son inaccesibles por motivos económicos, físicos, u otros motivos. La perforación de

pozos verticales cuyos objetivos se encuentran debajo de áreas residenciales e

industriales no es posible debido a que las ordenanzas y estatutos gubernamentales

prohíben perforar en estas condiciones. Otras áreas restringidas incluyen parques,

lagos, cementerios, áreas recreacionales, y carreteras principales. Adicionalmente

existen motivos relacionados a la seguridad y al medio ambiente que impiden la

ubicación de una locacion para la perforación de un pozo, tales como la contaminación

acústica, contaminación de acuíferos así como situaciones relacionadas a la

inseguridad de una ciudad o país. En estos casos el único método razonable para

recuperar el petróleo y gas del yacimiento en estas situaciones es mediante la

perforación direccional.

Page 10: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

6

Figura 2. Uso de perforación direccional para locaciones inaccesibles. (Short J.A. 1993)

2.2. Perforacion Horizontal y sus Aplicaciones

La perforación Horizontal es un procedimiento que se usa para perforar y completar

pozos de petróleo y gas, con el objetivo de mejorar la productividad del reservorio

comparada con pozos perforados por otros métodos de perforación. El diseño de

perforación de pozos horizontales esta constituida por una sección curva que es

perforada desde la parte inferior de la sección vertical, luego se perfora horizontalmente

en la formación desde el punto en el que la sección curva haya llegado a su inclinación

máxima de 90°.

La perforación horizontal de pozos es adaptable a una amplia gama de situaciones tanto

sobre la tierra como a cierta distancia de la costa, y su uso crece rápidamente.

En la mayoría de los principales campos productores de petróleo y gas se han perforado

pozos horizontales, en los países de gran actividad petrolera tales como Canadá,

Indonesia, Francia, África, Mar del Norte, Estados Unidos y Arabia Saudí. Están

establecidos los principales aspectos de la perforación horizontal tales como los diseños

de pozos de producción y de alcance extendido.

Un campo o reservorio pueden requerir menos pozos horizontales para el desarrollo

completo del yacimiento comparando con otros métodos de perforación. Los pozos

horizontales tienden a aumentar el área de drenaje del yacimiento por un múltiplo

Page 11: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

7

relacionado con la longitud de la sección horizontal perforada, brindando una mayor

productividad del yacimiento. El resultado neto de este tipo de aplicación es la

perforación de menos pozos horizontales para desarrollar el campo comparado con la

cantidad de pozos verticales y direccionales necesarios para el desarrollo del campo.

2.2.1. Incremento de Productividad

Los pozos Horizontales tienen tasas de producción más altas y producen mayores

volúmenes de petróleo y gas que los pozos perforados por métodos tradicionales, uno

de los principales parámetros para la optimización de la producción es la superficie de

contacto común entre el pozo y la formación netamente productiva, ya que esto

condiciona el flujo del petróleo y gas en el pozo. La producción es aproximadamente

proporcional al reservorio en contacto, los pozos horizontales tienen mucho mas

contacto con la formación comparada con las cortas secciones perforadas de los pozos

verticales y direccionales en contacto con el reservorio. El resultado neto es que la

sección horizontal del pozo y la formación tienen una longitud más grande y común

que esta perforada, permitiendo de esta manera producir los mayores volúmenes de

petróleo y gas.

El mecanismo de flujo del reservorio define el flujo de petróleo y gas, según la teoría

de flujo radial las líneas de flujo son rectas pero convergen en dos dimensiones a un

centro común y la sección expuesta al flujo disminuye a medida que se aproxima al

centro, esta restricción de flujo usa más energía del reservorio para producir una

cantidad dada de petróleo y gas, sin embargo, la teoría de flujo lineal las líneas de

flujo son paralelas y el flujo es constante, esta teoria de flujo lineal tiene más

influencia sobre el flujo en pozos horizontales. Los mecanismos de flujo son

complejos y los fluidos del reservorio tienen una cantidad de energía fija. En resumen,

la alta energía para producir requiere una restricción en la tasa de flujo que proviene ya

sea de pozos verticales o direccionales. El uso eficiente de energía del yacimiento

como en el caso de los pozos horizontales mejora la recuperación total del pozo antes

de que este alcance el límite económico de producción.

Page 12: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

8

Figura 3. Tipos de flujo en el pozo. (Petroleum Related Rock Mechanics; 1992)

La perforación horizontal también mejora la productividad de formaciones de baja

permeabilidad. Muchas formaciones contienen petróleo y gas pero producen

volúmenes bajos provenientes de pozos verticales y direccionales debido a la baja

permeabilidad de los reservorios, sin embargo los pozos horizontales han aumentado

las tasas de flujo debido al aumento del área de contacto con el reservorio y la

disminución de los requerimientos de energía del reservorio como se ha descrito

anteriormente. Por lo tanto, muchas formaciones de baja permeabilidad han

demostrado no ser comerciales con los métodos de perforación vertical y direccional,

sin embargo producen volúmenes de petróleo y gas económicamente rentables de

pozos horizontales, debido a su gran exposición a la zona de producción.

Figura 4. Perforación horizontal para incrementar productividad. (Short J.A. 1993)

Page 13: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

9

2.2.2. Fracturas Verticales

Las fracturas verticales, naturales o sumamente inclinadas, con frecuencia contienen

petróleo y gas, estas fracturas pueden cubrir amplias áreas verticales y contener

volúmenes grandes de hidrocarburos, algunas veces el petróleo y el gas fluye entre las

fracturas provenientes de formaciones adyacentes de baja permeabilidad. Un pozo

vertical o direccional puede penetrar una fractura, pero raras veces más de dos, algunas

veces de diseñan los pozos con la finalidad de atravesar un buen numero de fracturas

para que el pozo sea económicamente rentable, sin embargo la característica del diseño

de pozo horizontal es que con frecuencia atraviesa un gran número de fracturas.

Un ejemplo significativo de un campo con un alto ángulo de fracturas verticales es el

campo de Pearsall en el sur central Texas, un promedio de pozos verticales produce

aproximadamente 30,000 bbls durante su vida, esto es poco económico. Algunos

pozos horizontales ya han excedido 100,000 bbls, un pozo horizontal produjo más de

100,000 bbls en 16 meses, y la última recuperación proyectada fue de 375,000 bbls.

Esto requiere de completaciones verticales que serán al menos 3 y posiblemente 5

veces los de pozos verticales.

Figura 5. Perforación horizontal en fracturas naturales. (Short J.A.1993)

Page 14: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

10

2.2.3. Producción de Arena y Conificacion de Agua

En algunos casos existen pozos que producen con un alto caudal de producción y con

una alta caída de presión, los pozos horizontales tienen una sección larga del pozo que

esta expuesto a la formación por lo que la caída de presión es menor para una tasa de

producción en pozos horizontales que en los pozos verticales y direccionales. Esto

disminuye los problemas de producción relacionados con la caída de presión.

Cuando se tiene mayores caídas de presión la producción de arena es un problema

común, sobre todo la producción de arena no consolidada y de grano fino. La arena

erosiona los equipos conectados en el fondo del pozo y disminuye la tasa de flujo, sin

embargo los empaques de grava limitan la entrada de arena en el interior del pozo pero

en algunos casos reducen las tasas de producción, una menor caída de presión elimina

la necesidad el uso de empaques de grava y permite tasas de producción más altos.

Los problemas de conificacion de agua pueden ser reducidos con la reducción de la

caída de presión. El agua con frecuencia sirve de empuje para el petróleo y gas en el

reservorio, Los pozos completados en la sección del reservorio que contiene petróleo y

gas pueden producir agua debido a la conificación, una alta caída de presión provoca

que el agua fluya hacia arriba conificando la sección productiva de tal manera que es

producido junto con el petróleo y el gas. La producción de agua a menudo restringe la

producción del petróleo y el gas, además de esto el volumen de agua que se produce

ocasionado por la conificacion debe ser eliminada por métodos aprobados, generando

un incremento en el costo de producción.

La conificacion del gas ocurre en completaciones en las cuales una zona de petróleo

tiene una capa de gas natural, una alta caída de presión causa un flujo de gas hacia

abajo, conificando la sección de petróleo y siendo así producido conjuntamente con el

petróleo. Es preferible dejar el gas en su lugar para conservar la energía del

reservorio.

Los pozos horizontales permiten tasas de producción más altos producto de las

menores caídas de presión descritas anteriormente, esto reduce el problema de la

conificacion de agua y de gas. Mejor aun es posible restringir las posteriores

conificaciones de agua como de gas con el diseño de colocación de pozos horizontes

en una posición optima relativa en le reservorio con respecto a los contactos de agua,

gas y petróleo.

Page 15: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

11

Figura 6. Conificación de agua, petróleo y gas. (Short J.A. 1993)

2.3. Diseño de Pozos

Los mejores diseños de programas de perforación direccional y horizontal se realizan

mediante la preparación de una óptima dirección del pozo y siguiendo los objetivos que

conforman el programa de perforación de pozos. Los programas de perforación incluyen

varios parámetros basados en el equipamiento específico y las experiencias, algunas

veces los programas de perforación requieren modificaciones por eventualidades que

necesariamente tienen que tomarse en cuenta, normalmente esto sugiere un nivel más

alto de riesgo, la mejor forma de reducir este riesgo es mediante la ejecución de una

adecuada elección de factores disponibles.

2.3.1. Definiciones

Varios términos son resumidos en esta sección para un mejor entendimiento de los

diversos estudios que se realizaran en las páginas posteriores, las operaciones de

perforación son similares tanto para la producción de petróleo como la producción de

gas. Las palabras pozo y agujero a menudo son intercambiadas. Pozo hace referencia

al agujero o pozo antes de completarse. Pozo es también un término colectivo referido

a las paredes del pozo, y al agujero que ha sido perforado.

Page 16: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

12

2.3.1.1. Profundidad del Pozo

La profundidad medida a lo largo del eje del pozo es la profundidad medida (MD)

equivalente a la profundidad perforada, esta medida es usada para la medida del

casing, y otras medidas de longitud a lo largo del pozo. La profundidad vertical

verdadera (TVD) es la distancia vertical entre un punto en el pozo y el plano de la

superficie (inmediatamente encima del punto). La profundidad medida del pozo

(MD) es siempre igual o mayor que la profundidad vertical verdadera (TVD).

2.3.1.2. Drift del Pozo

Drift o inclinación del pozo es el ángulo entre el eje del pozo y el eje vertical, con

ambas líneas en el plano vertical.

2.3.1.3. Tool Face

El Tool face es el componente horizontal de la dirección del pozo respecto de la

broca u otra herramienta de perforación, esta definición es muy importante para

tener siempre en claro la dirección Azimutal del pozo.

2.3.1.4. Información de Referencia

La información de referencia puede ser muy provechosa. Es siempre importante

obtener la información de operación y datos de otros pozos en el área, así como

revisar los historiales del pozo para un diseño de referencia y datos de operación,

esta información incluye problemas en la construcción, control, y el ángulo de caída,

de la perforación y problemas de formación. Otras fuentes de información incluyen a

proveedores de equipo, rendimiento de los trabajadores, y la literatura publicada. La

importancia de investigar registros y la planificación detallada no puede ser obviada.

Es importante simplificar el diseño tanto como se pueda. El equipo y los

procedimientos de perforación direccional y horizontal son útiles para estabilizar el

pozo, pero las operaciones no son rutinarias. Los motivos para el análisis de la

Page 17: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

13

información de referencia incluyen operaciones relacionadas como: la desviación,

carreras de corrección de pozo, circulación, revisiones del survey, así como los

viajes adicionales de la broca.. Estas operaciones con frecuencia toman más tiempo

de lo planificado. El tiempo ampliado de las operaciones aumenta el riesgo, y los

problemas de la perforación vertical se incrementan con la perforación direccional y

horizontal.

2.3.1.5. Hidráulica de Perforación

La hidráulica de perforación debe ser calculada para asegurar un adecuado volumen

y presión del lodo para operar la turbina o motor de fondo y de tal manera que

permita remover los recortes producidos durante la perforación. La limpieza del

pozo es un problema común en pozos de alto ángulo y pozos horizontales, por lo que

es importante tener una presión y volumen del lodo adecuado. Los cálculos deberían

incluir la presión hidrostática de la columna del lodo y otras presiones basadas en la

profundidad vertical verdadera para pozos de alto ángulo. La profundidad medida

comúnmente es suficientemente exacta en un pozo vertical y pozos direccionales de

bajo ángulo. Puede haber diferencias considerables entre la profundidad vertical

verdadera y la profundidad medida en el caso de pozos horizontales, y pozos

direccionales con alto ángulo de inclinación.

2.3.1.6. Torque y Arrastre

El exceso de arrastre y torque puede ser un problema mayor en la perforación de un

pozo, en muchas operaciones de pozos direccionales y horizontales con altos ángulos

de inclinación el aumento en el arrastre y/o torque es significativo, para reducir al

mínimo la cantidad de problemas de pozos direccionales causado por los efectos

agresivos del arrastre y torque, el diseño de la inclinación del pozo debe considerar

la minimización de los cambios en el ángulo y suavizar las secciones curvas.

2.3.1.7. Patas de Perro

Se denomina patas de perro al cambio del ángulo en la combinación de las

direcciones verticales y horizontales medidos en deg/100pies, este valor no debería

Page 18: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

14

ser mayor a 4°/100pies mientras sea posible, cuando ocurren cambios que exceden

al recomendado se incrementa el riesgo de tener pegas y otros problemas en el pozo.

2.3.1.8. Diámetros Óptimos

Los diámetros pueden ser determinados para cada tipo de estructura de diseño de

pozo, un agujero óptimo medirá de 8 ¾ in. a 9 7/8 in, mientras que agujeros de

diámetro reducido necesitan motores direccionales mas pequeños y estos son menos

confiables y eficientes pues es más difícil de desviar y perforar pozos de larga

trayectoria especialmente en formaciones muy duras, y en formaciones abrasivas.

Esto es importante para diseñar que tanto mas se puede optimizar las medidas de los

pozos perforados.

2.3.1.9. Estabilidad del Pozo

La estabilidad del pozo puede presentar problemas en la sección horizontal del pozo,

aunque esto no es reportado como un problema mayor en la literatura, pruebas y

cálculos especiales ayudan en la determinación de los parámetros que permiten un

mejor control de la estabilidad del pozo. En la actualidad se esta usando el estudio

geomecánico del yacimiento para el análisis y prevención de problemas relacionados

a la estabilidad del pozo, así como problemas posteriores a la perforación.

Figura 7. Diseño de pozos. (Short J.A. 1993)

Page 19: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

15

2.4. Riesgos y Grados de Dificultad

Las operaciones de perforación tienen dos clases básicas de riesgo. Uno es el riesgo

encontrado durante la perforación y la completacion del pozo. El segundo es el riesgo de

que el petróleo y el gas no se encuentren o los volúmenes y los caudales sean menores al

estimado, ambos son igual de importantes, estos dependen del estudio preliminar, la

planificación cuidadosa, y operaciones prudentes. El pozo debe ser localizado donde los

volúmenes de petróleo y gas existan en cantidades económicas, de otra manera, la

operación de perforación no es económicamente rentable a pesar de la eficiencia

operativa.

Los riesgos incluyen el exceso de arrastre y el momento de rotación, la posibilidad de

pegas, problemas dentro de las formaciones o con el casing, rupturas, y otros problemas

de perforación. Los riesgos adicionales en pozos direccionales y horizontales se

relacionan con el número y el radio de curvas y vueltas, inclinación, longitud de la

sección del agujero inclinado y horizontal, estabilidad del pozo, y la experiencia del

operador.

Un blowout en Texas ocurrió cuando un pozo, mientras se perforaba horizontalmente,

prendió fuego y destruyó el aparejo. Si no todas las situaciones similares pueden ser

prevenidas con el equipo de seguridad y procedimientos del pozo, la severidad y la

probabilidad de problemas aumentan con la profundidad y ángulos más altos. El riesgo

es el menor en el caso del modelo vertical, aumenta con el modelo direccional, y es el

más alto para la perforación horizontal.

El riesgo de una perforación satisfactoria así como una buena completacion del pozo se

relaciona con el “Grado de dificultad”, riesgos más altos son asociados con un grado

más alto de dificultad y causan gastos mayores. La tabla 1 compara el grado de

dificultad de perforar pozos direccionales y horizontales en referencia a pozos verticales.

Page 20: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

16

“Grado de Dificultad” Direccional / Horizontal

ClasificacionGrado dedificultad Costro Relativo

(% sobre unvertical)

VERTICAL Low 0

DIRECCIONAL

Single-bend Low 25

Double-bend Low to Medium 50

Complex Medium 100

Extended-reach Medium to High 150

High-angle High 200

Slant Low to Medium 50

HORIZONTAL

Short Radius High 200

Medium Radius Medium to High 150

Long Radius High 200

Tabla 1 “grado de dificultad” en pozos horizontales y desviados. (Short J.A. 1993).

Ene este caso el pozo de referencia es un agujero vertical localizado en la misma área

que los pozos direccionales y horizontales. Estos son aproximados y son catalogados

sólo para dar una idea de la magnitud de riesgo, pero no deberían ser usados para

estimaciones reales.

2.5. Estimado de Costos de un Pozo

El estimado de costos de un pozo depende del proyecto específico. Los gastos

aproximados de pozos direccionales y horizontales se relacionan con el grado de

dificultad como fue catalogado en la tabla 1, estos son sólo una regla de proyecto

específico, modelan la complejidad, y varios problemas descritos en la sección sobre el

riesgo. El personal experimentado puede estimar de fuentes fidedignas los costos

aproximados de la perforación de un pozo, pero la exactitud puede disminuirse en

operaciones de riesgo más altas.

Page 21: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

17

Figura 8. Comparación de programas de perforación. (Short J.A. 1993)

Page 22: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

18

3. REGISTROS DE RESISTIVIDAD

Este capitulo introduce la medida de resistividad de la formación y explica como y por qué

medimos la resistencia de la formación durante la perforación. La resistencia es el grado al

cual una sustancia se opone el flujo de una corriente eléctrica. Aunque hayan diversos

factores complicados, en general, los hidrocarburos y la roca proporcionan una cantidad

grande de resistencia al flujo de corriente eléctrica. El agua salada en una formación

proporciona poca resistencia al flujo de una corriente eléctrica.

Figura 9. Registro de Resistividad

3.1. Aplicaciones de la Medida del Registro de Resistividad

El objetivo del Registro de Resistividad es medir la resistencia de la formación alrededor

de la perforación. Las medidas de resistividad son presentadas gráficamente sobre un

tramo de registro, las medidas de Resistividad la usamos para varios objetivos:

Localizar Hidrocarburos.

Determinar cuánto hidrocarburo está presente en la formación.

Correlacionar la información con múltiples registros.

Estimar la presión de poros.

Determinar el gradiente de Fractura.

Determinar la invasión de fluido.

Determinar la Anisotropía de las formaciones.

Page 23: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

19

3.1.1. Determinar la Presencia de Hidrocarburo en la Formacion

La medida de resistividad de la formación nos ayuda a determinar cuánto del fluido de

formación es hidrocarburo, en el fluido de formación, el petróleo o el gas nunca es el

100 %. Estos siempre vienen acompañados de algún volumen de agua. Se introducen

datos de registros de resistividad en ecuaciones desarrolladas para calcular la

saturación de agua de la formación, o calcular cuánto del fluido de formación es

petróleo y cuanto es agua, la base de todas estas ecuaciones para calcular la saturación

de agua es la Ecuación de Archie.

Figura 10. Registro de resistividad usado para determinar saturaciones.

Casi todos los tipos de formación contienen agua, pero hay menos y menos volumen

de agua conforme se avanza en profundidad en la Tierra. Esto es porque el peso de las

capas litostaticas origina que las capas mas inferiores sean las mas compactadas, esto

con eficacia "exprime" hacia afuera el agua de estas áreas y reduce la porosidad de la

formación. Ya que hay menos agua en niveles más profundos, la resistividad debería

aumentar mientras mas profundo se perfore.

Page 24: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

20

3.2. Zonas de Invasion de Fluidos

Durante la perforación de un pozo existe una interacción dinámica entre la presión

hidrostática causada por el fluido de perforación y la presión de poros natural de la

formación. Mientras se perfora en el método de sobre balance, la presión hidrostática

excede la presión de poros, lo que origina un ingreso de fluido hacia la formación. Este

fenómeno es mayor Cuando se perforan algunas zonas de baja presión poral, el efecto

del ingreso de fluido es aun mayor dañando la formación. Esto es visible en el registro

de resistividad y para el estudio del mismo se determino un modelo de análisis de

invasión de fluido en el pozo el cual divide las zonas de invasión en tres tipos.

Zona Lavada

Zona de Transición

Zona Virgen

Figura 11. Perfil de invasión de fluido.

Page 25: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

21

3.2.1. Zona Lavada

Esta zona contiene solo el filtrado del lodo, los fluidos de la formación original han

sido lavados.

Figura 12. Zona Lavada.

3.2.2. Zona de Transicion

Esta zona contiene filtrado de lodo y fluido de la formación original. Esta más lejos de

las paredes del pozo, el desplazamiento de fluido de formación por el filtrado de lodo

es menor y menos completa.

Figura 13. Zona de Transición.

Page 26: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

22

3.2.3. Zona Virgen

Esta zona contiene hidrocarburos y agua natural de la formación. La resistividad de

esta zona es la que se determina para el estudio real del yacimiento.

Figura 14. Zona Virgen.

Estos tres tipos de zonas son caracterizadas y tomadas en cuenta en este capitulo por la

importancia en el efecto que esto tiene en el registro de resistividad ya que

formaciones con alto grado de resistividad pueden pasar desapercibidas en el análisis

petrofisico si es que no se considera el conocimiento de la invasión de fluido en la

formación, así mismo es muy importante determinar el mecanismo de invasión en el

pozo para determinar fracturas naturales que al final resulten favorables en la

producción del reservorio.

Page 27: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

23

4. EVOLUCION DE LA TECNOLOGIA LWD

4.1. Primera Generacion

En las primeras innovaciones de este servicio de medición continua durante la

perforación, la aplicación básica de esta herramienta evaluaba geológicamente la

formación para un mayor conocimiento de las estructuras perforadas así como de la

litología atravesada durante la perforación del pozo, a continuación se detalla mediante

un esquema la aplicación inicial de LWD.

Figura 15. Esquema del servicio LWD en su primera generación.

LWD

Innovación

Herramientas

Registro de ResistividadRegistro de Densidad

AplicaciónPrincipal

Resistividaddensidad-neutrón

Resistividad deespaciamiento dual

Resistividadcompensada

Evaluación de laformación

Correlación Evaluación de laformación

Reconocimiento delitología

Page 28: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

24

4.2. Segunda Generacion

La segunda fase de desarrollo de las técnicas LWD, ocurridas a mediados de la década

de 1990, reflejo esta evolución con la introducción de mediciones azimutales, imágenes

del hueco, motores direccionales instrumentados y programas de simulación para lograr

una colocación exacta del pozo mediante la geonavegación. En un principio, el

direccionamiento en tiempo real utilizaba la velocidad de penetración (ROP, por sus

siglas en Inglés), y posteriormente la resistividad para detectar los bordes de las capas de

arena y lutita.

Figura 16. Esquema del servicio LWD en su segunda generación.

Pantalla deGeonavegación

Pantalla decorrelación

Evaluación de laformacion

LWD

Innovación

Herramientas

Máxima densidad

AplicaciónPrincipal

MotorInstrumentado

Resistividad frentea la barrena

Imágenes deResistividad

LecturasAzimutales

Geonavegacionexitosa

Page 29: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

25

4.3. Tercera Generacion

Actualmente, los ingenieros de perforación utilizan medidas azimutales obtenidas en

tiempo real que incluyen imágenes del pozo, buzamientos y densidad de la formación,

para encontrar el yacimiento y permanecer dentro de la zona de interés del mismo. Estos

avances han resultado en un porcentaje mayor de pozos exitosos, en particular pozos con

desviación muy marcada, de alcances extendidos y horizontales.

En la actualidad, la eficiencia de la perforación, el manejo adecuado del riesgo y la

colocación exacta del pozo son los puntos clave para disminuir los costos de exploración

y desarrollo.

La eficiencia de la perforación significa minimizar el tiempo perdido o improductivo al

evitar problemas como las fallas en la columna de perforación, atascamientos y pérdidas

o entradas de fluidos; así como también manejar los riesgos inherentes al proceso de la

perforación, tal como la inestabilidad del pozo.

Page 30: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

26

Figura 17. Esquema del servicio LWD en su tercera generación.

Módulos deInclinación

Pantalla decorrelaciónlitológica

Geonavegacionhacia la mejor

parte delyacimiento

LWD

Innovación

Herramientas

Imágenes dedensidad

AplicaciónPrincipal

Prevención deproblemas parauna perforación

eficiente

Imágenes entiempo real

Aplicación enpozos con alta

dificultad

Mayor exactituddurante la

Geonavegacion

Decisiones entiempo real paraobtener eficienciade perforación ymanejo del riesgo

Page 31: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

27

5. MEDICION DE LA RESISTIVIDAD DE LA FORMACION

Las herramientas toman medidas de resistividad que usan como principio la Ley de

Ohm’s. Una herramienta envía desde el trasmisor una corriente eléctrica dentro de la

formación, el receptor mide la corriente y el voltaje aplicado que se produce para

determinar la resistencia de la formación.

Ley de Ohm’s: V=R*I

V = Voltaje

R = Resistencia

I = Corriente

Figura 18. Esquema de flujo de corriente en la formación.

5.1. Medida de la Corriente Cercana a la Broca

Para medir la resistividad en la broca, se ubica un dispositivo de medida en el collar de

la herramienta cercano a la broca, este dispositivo de medida es un espiral enrollado y la

broca asi como la parte baja de la herramienta son usadas como un electrodo.

Page 32: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

28

Cuando la corriente pasa debajo del collar induce un voltaje y una corriente en el rollo.

La herramienta mide la corriente en el rollo, esta corriente es proporcional a la medida

de la corriente alrededor de la herramienta, la espiral mide el flujo de corriente a lo largo

del eje de la herramienta.

La cantidad de corriente que pasa por el rollo de medición esta relacionada con la

facilidad con la cual la corriente puede dejar el instrumento debajo del rollo de

medición.

Figura 19. Uso de la broca como electrodo.

Por ejemplo, si la broca entra en una formación resistiva, más corriente fluirá encima del

rollo y menos corriente dejará la broca debajo del rollo. Ya que el voltaje permanece

constante, la corriente que disminuye indica un aumento de la resistencia cercana a la

broca.

A la inversa, si la broca entra en una formación conductiva, una inundación de corriente

atraviesa el rollo y sale en la zona conductiva. La corriente creciente quiere decir una

disminución en la resistencia cercana a la broca.

Page 33: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

29

Figura 20. Medicion de la resistividad de la formacion.

5.2. Medicion de la Corriente en los Diferentes tipos fe Fluidos de Perforacion

Existen dos tipos de fluidos de perforación en los cuales estas herramientas podrían

actuar y para las cuales la medicion de la corriente se realizara en diferentes formas, a

continuación se detalla las medidas de resistividad de la formacion para lodos

conductivos, y lodos no conductivos.

5.2.1. Medicion de la Corriente en Lodo Conductivo

En un fluido de perforacion conductivo o base agua, el sistema de medicion permite el

flujo de la corriente desde cualquier punto en la herramienta y la broca hacia la

formacion y que luego retorna hacia la herramienta siendo captada por el transmisor

para cerrar el circuito.

Page 34: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

30

Figura 21. Paso de la corriente en un lodo conductivo.

5.2.2. Medicion de la Corriente en Lodo no Conductivo

En un fluido de perforacion no conductivo, base petróleo o aireado, el lodo trabaja

como un aislante debido a su alta resistividad, la corriente fluye desde la broca hacia la

formacion debido al contacto directo que existe entre ambos, y luego esta corriente

retorna a la herramienta por algunos puntos de contacto entre la sarta de perforación y

la formación realizandose de esta manera la toma de la medida de corriente para el

calculo de reisistividad de la formacion.

Figura 22. Paso de la corriente en un lodo resistivo.

Page 35: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

31

5.3. Profundidad de Investigación

La corriente que fluye directamente hacia el transmisor trata de tomar el camino más

corto, debido a que los campos de la corriente electrica son paralelas, la corriente que

fluye a travez del arreglo de transmisor-receptor mas cercano tomara el camino mas

corto y por lo tanto tendra menor profundidad de investigacion, a diferencia del arreglo

transmisor-receptor mas lejano el flujo de la corriente tomara el camino mas largo y por

lo tanto tendra una mayor profundidad de investigacion.

Cuando el transmisor es más lejano, mas profunda es la profundidad de investigación.

Por ejemplo, se tienen tres electrodos de medición. El electrodo más cercano al

transmisor tiene una profundidad de investigación de 1 pulgada. El electrodo ubicado al

medio tiene una profundidad de investigación de 3 pulgadas y el electrodo más lejano

del transmisor tiene una profundidad de investigación de 5 pulgadas.

Figura 23. Profundidad de investigación.

Page 36: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

32

6. TRANSMISION DE LA INFORMACION EN TIEMPO REAL

Con el avance de las tecnología LWD y MWD. La consiguiente recolección de crecientes

cantidades de datos, los instrumentos de telemetría se han convertido en un cuello de

botella al momento de movilizar estos grandes volúmenes de información a superficie. La

obtención de datos en tiempo real requiere anchos de banda adecuados y altas velocidades

de transmisión de datos.

6.1. Modo de Transmision de Informacion en Tiempo Real

La herramienta MWD es la fuente de energia primaria que va conectado a la herramienta

LWD. Esta conexión es hecha mediante una extensión, la extensión tiene debajo de la

herramienta una fuente eléctrica (LTB). La energia es transmitida por la fuente electrica

al la herramienta LWD. Los datos en tiempo real también son transmitidos por la misma

fuente del instrumento LWD al instrumento MWD.

El instrumento MWD debe sobre proporcionar la fuente de energia necesaria y recibir

los datos datos, cuando la herramienta MWD proporciona la energia suficiente para la

operacion el instrumento LWD transmite datos en tiempo real y al mismo tiempo genera

datos de grabación a la memoria.

Figura 24. Modo de transmisión de la información.

Page 37: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

33

6.1.1. Requerimientos de La Fuente de Energia

Las herramientas LWD necesitan una fuente de energia para lo siguiente:

Tiempo de corrida de la herramienta.

Mediciones continuas durante el proceso de perforacion.

Grabar la información en la memoria.

Enviar la información en Tiempo real a la herramienta MWD para la transmisión a

superficie.

6.2. Desafios para la Transmision

La recuperación de datos almacenados en el fondo del pozo requiere la extracción del

BHA entre las operaciones de los viajes de la sarta de perforacion establecidos en el

pozo. La interrupción de la perforación para la recuperación e interpretación de los datos

puede resultar en un mayor tiempo de perforación y, por ende, en pozos más costosos.

El sistema de telemetría MWD permite la transmisión inalámbrica de datos desde la

barrena hasta la superficie. La singular técnica que utiliza esta herramienta es la

transmisión continua de pulsos mediante el lodo de perforación el cual permite

transmitir datos a velocidad de hasta 12 bits por segundo (bps). Hoy en día mediante las

herramientas LWD es posible obtener registros en tiempo real con densidades de

muestreo de datos equivalentes a la de registros adquiridos con herramientas operadas a

cable y a velocidades de penetración de hasta 70 m/hr (230 pies/hr). La velocidad e

intensidad de la transmisión de datos pueden configurarse para distintos tipos de fluidos

de perforación y para ciertas profundidades de perforación especificas.

La perforación en aguas profundas plantea desafíos adicionales en lo que respecta a los

sistemas de telemetría. Las temperaturas del fondo del mar pueden ser inferiores a 0º C

(32º F). Con una presión hidrostática en la base del tubo de elevación superior de 34.5

MPa (5000 lpc). El fluido de perforación que fluye en forma ascendente desde las

calidas condiciones existentes en el fondo del pozo se enfría considerablemente al

atravesar los largos y fríos tubos de elevación que los llevan a la superficie. El cambio

de temperatura, entre la superficie y el fondo, puede afectar en forma sustancial la

viscosidad de los fluidos de perforación. La atenuación de la señal puede aumentar al

enfriar el fluido, provocando la pérdida o degradación potencial de la señal del fondo del

Page 38: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

34

pozo, esto debido a que la trasmicion de los datos del fondo del pozo hacia la superficie

se realiza mediante pulsos compresionales emitidos por la herramienta MWD los cuales

viajan a travez del fluido de perforacion y estan sometidos a las condiciones fisicas del

mismo. Los diseños modernos de las herramientas de telemetría, ajustan

automáticamente la velocidad de transmisión de datos como una función de temperatura

para reflejar los cambios producidos en la viscosidad del lodo y en la potencial

atenuación de la señal.

Figura 25. Efectos de la variación del ROP en la transmisión. (Oilfield Review, 2001)

6.3. Evolucion y Mejora del Sistema de Telemetria

Los recientes avances implementados en el sistema de telemetría para la transmisión de

datos hacia la superficie, son usados para reconfigurar el sistema de telemetría en el

pozo en caso de producirse cambios en los parámetros clave durante una carrera de

barrena. Por ejemplo, antes de comenzar el incremento angular en un pozo horizontal, la

información sobre la orientación del pozo en tiempo real es prioritaria; en el tramo

horizontal son más importantes las mediciones de evaluación de formaciones. La

capacidad del sistema de telemetría también permite reconfigurar la velocidad de

transmisión de la señal y la intensidad de la misma acorde a las necesidades especificas.

Además de observarse mejoras en la telemetría, esta última década ha sido testigo de

mejoras sustanciales en la visualización de la pared del pozo. Los datos de pozo en las

Page 39: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

35

décadas de 1970 y 1980, eran representados como curvas simples en carriles de

registros. Hasta hace poco tiempo, este seguía siendo el método de visualización de

datos LWD preferido, o quizás el único.

El desarrollo de herramientas avanzadas de generación de imágenes de la pared del pozo

y de programas de análisis de datos condujo al despliegue de imágenes en dos

dimensiones (2D). Si bien los analistas de registros experimentados pueden interpretar

fácilmente las visualizaciones 2D, el proceso es subjetivo y no intuitivo, sobre todo para

el analista inexperto. A fines de la década de 1990, las imágenes 3D proporcionaron una

visualización más directa de la pared del pozo. En el año 2001, los avances registrados

en materia de tecnología de procesamiento de datos condujeron a la generación de

imágenes 3D texturazas, lo que permitió agilizar y comprender mejor la interpretación.

Hoy, la gran cantidad de conocimientos que proveen las imágenes de la pared del pozo

puede ser apreciada por un mayor grupo de personas relacionadas con las tareas de

perforación.

Figura 26. Representación del registro en el tiempo. (Oilfield Review, 2001)

Page 40: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

36

7. COLOCACION ÓPTIMA DE POZOS

Las imágenes de cobertura total, utilizadas en la interpretación estructural, durante la

geonavegación, para la evaluación de la formación, y para el análisis de fallas del hueco,

se pueden obtener con la herramienta LWD en amplias condiciones de lodo. En los lodos

conductivos, la resistividad azimutal proporciona capacidad adicional de generación de

imágenes. Actualmente, se pueden generar imágenes del registro de densidad e imágenes

de resistividad en tiempo real, o a partir de los datos almacenados en memoria. En pozos

horizontales, o con desviación muy marcada, perforadas con lodos sintéticos o a base de

petroleo, estas herramientas proporcionan con frecuencia la unica opción para obtener

imágenes del hueco para una interpretación optimizada.

En un principio, Las herramientas LWD fueron construidos para alojarlos en diámetros de

4 ¾ pulgadas, pero hoy en día se encuentran disponibles para BHA’s de 6 ¾ pulgadas.

Estas herramientas han sido diseñadas para agujeros cuyo diámetro es inferior a 6 ¼

pulgadas, mientras que las nueva herramientas se usa para agujeros de 8 a 9 ¼ pulgadas.

El nuevo sistema LWD también ha sido diseñado para agujeros de 12 ¼ pulgadas.

7. 1. Imagenes Azimutales

Para optimizar la eficiencia y exactitud de la perforación, las imágenes de la herramienta

LWD de alta resolución pueden revelar características estratigráficas sutiles,

estratificación de la formación y buzamientos cercanos al hueco que les ayudan a los

ingenieros de perforación a mantener los agujeros paralelos a la estratificación lo cual

reduce la incertidumbre en la geonavegación.

Las imágenes de resistividad también proporcionan información valiosa sobre fracturas

y fallas del hueco que reflejan el estado geomecánico del agujero. Mediante el

reconocimiento y entendimiento de los modos y mecanismos de fallas del hueco, con

esto es posible tomar acciones correctivas que mejoran en la eficiencia de la perforación.

7.1.1. Imágenes de Densidad Azimutal

Los registros de imagen azimutal de alta resolución son extremadamente valiosos en

los pozos con desviación muy marcada, sin embargo, algunas veces la misma

Page 41: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

37

desviación complica la medición. La tecnología del densidad-neutrón azimutal permite

mediciones de densidad y factor fotoeléctrico, Pe, con resolución vertical de 6

pulgadas y que ahora se muestrean en 16 sectores azimutales para obtener imágenes

más detalladas para optimizar las decisiones de geonavegación en tiempo real y

mejorar el análisis petrofisico. La disponibilidad de los datos de los cuadrantes asegura

que se obtengan valores de densidad confiables en agujeros con desviación muy mar-

cada. Esto tiene particular importancia cuando las herramientas se bajan sin

estabilizadores. La visualización de la imagen del registro de densidad o el análisis de

los datos de los cuadrantes indica los sectores que están realmente en contacto con el

hueco, por lo tanto proporcionan una medición exacta de la densidad.

En el caso de hoyos agrandados, es posible obtener datos exactos y confiables en

forma manual de los distintos sectores para intervalos diferentes. Más aún que el

conjunto de fondo se mantenga en rotación, los sensores azimutales continuarán

obteniendo mediciones para cada sector. Debido a que la herramienta puede

encontrarse descentralizada dentro del hueco, estos datos pueden representar cantida-

des variables de lodo y formación. Bajo estas circunstancias, las imágenes del registro

de densidad aún proporcionan valiosa información sobre la geología alrededor del

hueco, como por ejemplo buzamientos, concreciones, y condiciones de hueco en

espiral. Aunque los datos estructurales, tales como los buzamientos absolutos

derivados de las imágenes y de azimut obtenidos de una herramienta que se desliza no

son tan confiables, los cambios relativos todavía siguen siendo importantes.

7.1.2. Pantalla de Correlacion

La presentación del registro LWD para el sistema de medicion de densidad azimutal se

detalla mediante carriles o tracks en los cuales de despliega la información obtenida

del pozo en tiempo real.

Carril 1:

Contiene la profundidad vertical verdadera (TVD) y el tiempo transcurrido entre la

penetración de la barrena y la medición de la resistividad.

Carril 2:

Muestra los registros de rayos Gamma (rojo) y Rwa (relleno en verde).

Page 42: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

38

Carril 3:

Presenta los volúmenes relativos de las litologías, el agua ligada a las arcillas y la

porosidad efectiva.

Carril 4:

Despliega las resistividades medidas de la formacion.

Carril 5:

Muestra el registro de Densidad Azimutal

Carril 6:

Contiene la imagen de densidad, las bandas verdes representan intervalos en los que no

se generaron imágenes.

Figura 27. Pantalla de correlación. (Oilfield Review, 2001)

En una descripcion breve de este registro se puede determinar que los buzamientos

obtenidos de los patrones entrantes y salientes indican que el pozo se esta perforando

hacia el tope de la estructura. La resolución vertical de la imagen se encuentra

dominada por la resolución del detector lejano, 6 pulgadas para el registro de densidad,

y 2 pulgadas para el Pe.

Las imágenes muestran que la barrena de perforación se esta dirigiendo hacia arriba y

se aproxima a un borde mucho antes de que sea evidente en la geonavegacion con

registros de rayos gamma o resistividad. Los datos e imágenes azimutales

proporcionan orientación del pozo respecto de los planos de estratificación, lo cual es

vital para una geonavegacion exacta y eficiente.

Page 43: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

39

7.2. Imágenes de Resistividad

Las herramientas LWD agregan importantes mediciones de resistividad lateroperfil,

estas mediciones incluyen resistividad frente a la barrena, resistividad anular de alta

resolución, y una opción para resistividad azimutal de alta resolución cercana a la

barrena, con varias profundidades de investigación. Las mejoras técnicas proporcionan

mediciones más exactas en zonas de alta resistividad; incluso en los lodos más

conductivos. La resolución de las imágenes LWD registradas ha mejorado al

incrementar la tasa máxima de barrido de una vez cada 10 segundos, a una vez cada 5

segundos. El procesamiento en el fondo del pozo, permite cálculos en tiempo real de

buzamiento estructural, esta tecnologia ahora Incluye la transmisión y visualización de

imágenes de cobertura total y en tiempo real de resistividad azimutal de 56 sectores.

Cuando existe suficiente contraste de densidad, la heterogeneidad de la formación, los

estratos delgados y las características estratigráficas a gran escala se pueden identificar

en las imágenes del registro de densidad, así coma en imágenes de resistividad de mayor

resolución.

7.2.1 Presentación de registros de Imagenes Resistividad en tiempo real.

Los carriles de los registros tomados en el pozo generalmente se distribuyen de la

siguiente manera:

Carril 1:

Muestra el azimut del pozo, así como el registro de rayos gamma azimutal (lado

superior del pozo de color rojo, y lado inferior del pozo de color verde).

Carril 2:

Contiene los buzamientos aparentes (triángulos, lado derecho) y los buzamientos

verdaderos (círculos, lado izquierdo) computados en tiempo real.

Carril 3:

Presenta las curvas de resistividad LWD: anular (negro), barrena (rojo) y botón de

lectura profunda del lado superior (morado, línea de puntos) y el lado inferior (morada,

línea de rayas) del pozo.

Carril 4:

Page 44: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

40

Contiene la imagen generada en tiempo real a partir de datos de resistividad de los

botones de lectura profunda de los 56 sectores.

Figura 28. Pantalla de correlación. (Oilfield Review, 2001)

La imagen muestra el hueco paralelo a una capa delgada. La banda verde representa un

intervalo donde no se genero imagen, debido a que hubo un problema de rotación de la

herramienta.

7.2.2. Evaluación de las imágenes LWD y la herramienta FMI

La comparación de las imágenes de resistividad LWD la cual es corrida en forma

continua durante la perforación de pozos para la obtención de imágenes del pozo así

como los diversos registros que se obtienen de esta herramienta para la evaluación

continua de la geonavegacion, será comparada con los registros de imágenes que se

obtienen de la herramienta FMI operada a cable, la cual se corre terminada la

perforación, este análisis se muestra a continuación en la siguiente figura, en donde se

observa claramente que la resolución de la imagen LWD es menor que la de su par

operada a cable FMI, sin embargo las características geológicas primarias pueden

observarse con facilidad y pueden utilizarse para determinar buzamientos

Page 45: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

41

estratigráficos y estructurales. La comparación de buzamientos seleccionados

manualmente con la imagen de la herramienta LWD y los buzamientos del FMI

muestran una excelente concordancia.

Figura 29. Comparación entre las imágenes LWD y FMI. (Oilfield Review, 2001)

Figura 30. Comparación de buzamientos LWD y FMI. (Oilfield Review, 2001)

Page 46: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

42

7.3. Medicion de la Inclinacion de la Broca

La colocación exacta del pozo significa dirigir los pozos a una posición óptima dentro

del yacimiento para maximizar la producción, al mismo tiempo las restricciones

económicas actuales relativas al alto costo de acceso a los yacimientos, con frecuencia,

llevan a que un pozo hoy tenga acceso a objetivos múltiples, comúnmente sobre largos

tramos horizontales. El no corregir a tiempo las variaciones no previstas en la geología y

la estructura, tales como desplazamientos de fallas o cambios de buzamiento, pueden

provocar un agujero horizontal o desviado de bajo valor.

Los datos azimutales y de inclinación en las cercanías de la broca, especialmente las

imágenes del hoyo, ofrecen los mejores medios para alcanzar el objetivo deseado con

menos correcciones, menor tortuosidad y una mayor parte del agujero dentro del ya-

cimiento. Las herramientas actuales habitualmente logran una resolución en terminos de

profundidad vertical absoluta de menos de 2 m (6 pies) y en terminos de profundidad

vertical relativa de menos de 0.35 m (1 pie). Esto permite no sólo que los pozos

permanezcan dentro de zonas productivas delgadas sino que también evita colisiones

con otros pozos que drenan la misma zona.

Para lograr estos objetivos, los datos deben estar disponibles y enviarse a las personas

que han de tomar decisiones dentro del periodo apropiado para la selección de opciones

operativas. El tiempo real ‘apropiado” puede variar de segundos a 12 horas,

dependiendo del tipo de problema que se anticipe o enfrenta, así como del tiempo y la

velocidad de respuesta requeridos. Los rápidos avances en la tecnología de la

comunicación, particularmente soluciones que se basan en las herramientas y el

potencial de Internet, hacen posible el envió oportuno de datos hacia los equipos de

evaluación de activos ubicados en cualquier parte del mundo.

La inclinación continua ahorra tiempo de perforación al reducir la necesidad de tomar

medidas estacionarias. Los relevamientos continuos del pozo, provenientes del módulo

de Medición de la inclinación en la Barrena en combinación con datos de las imagenes

LWD, optimiza el control y la eficiencia de la perforación.

La medición directa del cambio de inclinación durante la perforación, optimiza el

Page 47: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

43

direccionamiento y da como resultado una reducción en la tortuosidad y mínimas ondu-

laciones en los pozos horizontales. Las reducciones resultantes en el esfuerzo de torsión

(torque) y en el arrastre de la columna de perforación permiten velocidades de

penetración mayores y mejora la capacidad para perforar pozos de alcance extendido con

secciones laterales de mayor longitud, a la vez que se reducen las posibilidades de

quedar atascado.

7.3.1. Evaluación de las Medidas de Inclinación de la Broca

La comparación de los resultados de la medición de la inclinación en la broca de la

herramienta LWD (rojo), con mediciones convencionales MWD (amarillo) y

relevamientos (surveys) estacionarios (morado) se realizaron en un pozo en el cual se

corrió estas tres herramientas para evaluar la confiabilidad del modulo de medicion de

la inclinacion de la broca de la herramienta LWD.

Los datos corresponden a un pozo horizontal de 6 ¼’’ perforado en Austin Chalk. Las

mediciones estacionarias (surveys) y las mediciones continuas tomadas durante la

perforación del pozo con el modulo de inclinacion de la herramienta LWD se alinean

muy bien, comprobando que las mediciones realizadas en este caso son de alta

confiabilidad. Mientras que existe una pequeña diferencia entre las mediciones MWD

y LWD de solo 0.2 grados, proveniente de la forma en que la flexión del conjunto de

fondo, afecta a cada herramienta. La diferencia entre las dos mediciones disminuye

mas cuando los botones del estabilizador se encuentran en posición retraída (área

morada) y el BHA pierde ángulo.

Page 48: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

44

Figura 31. Comparación de mediciones de inclinación del pozo. (Oilfield Review, 2001)

7.4. Factores que Afectan las Herramientas

El procesamiento convencional y el análisis de imágenes, que incluye la normalización y

las técnicas de extracción de buzamientos, se aplican a las imágenes de resistividad y

densidad LWD. Las imágenes de resistividad tienen la resolución LWD más alta; sin

embargo, ésta continúa siendo más baja que la resolución del generador de imágenes

Micro eléctricas de Cobertura Total FMI operado a cable por un factor de cinco. Las

imágenes LWD pueden obtenerse sólo durante la rotación de la columna de perforación.

La calidad de la imagen se ve afectada por un número de factores que deben

considerarse durante la interpretación de la imagen.

7.4.1. Primer Factor

El primer factor es la ubicación relativa de los sensores usados para generar las

imágenes de resistividad que se generan a partir de los datos obtenidos con sensores

ubicados cercanos a la barrena, mientras que las imágenes del registro de densidad se

generan por sensores colocados entre 60 y 130 pies (18 y 40 m) detrás de la barrena.

Las características que se manifiestan en las imágenes del registro de densidad pero

que no se detectan en las Imágenes de resistividad pueden ser Inducidas por la perfora-

ción y señalan la necesidad de hacer correcciones en el proceso de perforación.

Page 49: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

45

7.4.2. Segundo Factor

El segundo factor es la discriminación de las características estructurales y

estratigráficas en las imágenes del registro de densidad, pues requiere un contraste de

densidad mayor a 0.1 g/cm3.

7.4.3. Tercer Factor

La forma, el tamaño del hueco y la posición del BHA dentro del agujero pueden

impedir que los sensores hagan contacto con la pared del hueco, lo que resulta en una

Imagen de menor calidad.

7.4.4. Cuarto Factor

El cuarto factor es el echo de que la resolución de las imágenes se ve afectada cuando

la velocidad de rotación es menor a 30 rpm o la velocidad de penetración es mayor a

200 pies/hr (61 m/hr) ya que afecta el número de datos por pie adquiridos.

Page 50: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

46

8. APLICACIONES DEL SERVICIO LWD

8.1. Aplicación de la Medicion de Inclinación de la Broca

En un pozo horizontal de África Occidental el objetivo estaba a tan sólo 4 m (13 pies)

por debajo del contacto gas-petróleo y 12 m (39 pies) por encima de un acuífero. Se

perforaron un pozo desviado y seis horizontales para crean los drenajes horizontales. A

los efectos de lograr el máximo drenaje del yacimiento y evitar la conificación de agua y

la producción de gas, se requería una tolerancia de profundidad vertical de ± 1 m (± 3

pies).

En los primeros dos pozos, A y B el operador utilizó un conjunto de fondo BHA

convencional equipado con motor direccional, y la variación de profundidad vertical

superó los 2 m (6.6 pies), lo que dio como resultado la producción de gas.

8.1.1. Uso de la Tecnología de Medición de Inclinación LWD

Debido a que en los primeros pozos la perforación condujo a problemas de producción

por la falta de precisión en la colocación del pozo, se decidió usar la tecnología LWD.

El siguiente pozo se perforo con la herramienta de medicion de la inclinacion de la

broca, un motor instrumentado con un sensor de inclinación posicionado a 2.5 pies

detrás de la broca. Los resultados mostraron que la tolerancia vertical promedio

mejoró a ± 0.7 m (± 2.2 pies). En el Último pozo se perforó un agujero de 8 ½

pulgadas, desde el cual se construyó un tramo lateral de 6 pulgadas. Se utilizó un

motor direccional equipado con el módulo de inclinacion de la broca, y la tolerancia

vertical promedio lograda fue ±0.3 m (±0.9 pies). El tramo lateral de drenaje fue

terminado tres días antes de lo programado debido a la reducción de tortuosidad y al

mejor control del BHA. En los últimos dos pozos, la utilización de sensores cercanos a

la barrena que proporcionaban control direccional continuo, junto con los motores

direccionales, lograron la tolerancia de profundidad necesaria para evitar la producción

de gas.

Page 51: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

47

Figura 32. Comparación de las mediciones de inclinación del pozo.

8.2. Aplicación en la Geonavegacion de Pozos

Definir la estructura geológica durante la perforación es con frecuencia vital para un

proceso exacto de geonavegación. Los buzamientos estructurales calculados en tiempo

real o tiempo real apropiado, utilizando imágenes creadas con los datos almacenados en

memoria durante viajes de la barrena a partir de las herramientas LWD, son utilizados

para actualizar el sistema de simulación. Esto reduce la incertidumbre en el modelo

estructural y ayuda a mejorar la interpretación. Los resultados son una perforación más

eficiente y un costo menor para alcanzar el objetivo deseado o para permanecer dentro

de la zona productiva. Las interpretaciones detalladas del buzamiento que se realizan

después de la perforación y que utilizan imágenes del registro de densidad y resistividad,

son usadas para actualizar mapas geológicos y planear trayectoria de pozos futuros. La

Page 52: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

48

determinación del buzamiento a partir de las imágenes del registro de densidad y

resistividad es similar al proceso utilizado por la interpretación tradicional de los

registros de microresistividad.

La compleja geología de muchos yacimientos presenta retos técnicos para la perforación

y la evaluación de yacimientos, los objetivos incluyen estructuras anticlinales compactas

con buzamiento empinado. Para tener éxito en la perforación y terminación de pozos, se

requiere obtener buzamientos estructurales y estratigráficos precisos, a los efectos de

actualizar los modelos sísmicos previos a la perforación y poder geonavegar los pozos

para su colocación óptima.

8.2.1. Descripción del Problema y Necesidades Asociadas a la Ubicación

Estructural

En el oriente de Venezuela, un operador utiliza tramos laterales de drenaje para

desarrollar la Faja, un yacimiento de petróleo pesado de baja profundidad. El

yacimiento comprende arenas apiladas, de alta permeabilidad, no consolidadas, que

normalmente tienen entre 20 y 40 pies (6 y 12 m) de espesor. Estas arenas apiladas de

canal son cuerpos arenosos discontinuos separados por laminaciones de limolita

(limosas, cenagosas, fangosas), creando un ambiente complejo que presenta retos para

la perforación lateral y la colocación óptima del pozo. En este caso las mediciones

azimutales de la herramienta LWD se utilizan principalmente para diferenciar entre las

laminaciones de limolita no productivas, las arenas productivas homogéneas y los

bordes del yacimiento de lodo endurecido (fangolita, lutolita). Estas mediciones

también proporcionan la orientación relativa de estas características geológicas con

respecto a la trayectoria del pozo, permitiendo que se reconozcan características

estratigráficas y que se estudie su influencia en la producción.

Se perforaron varios tramos laterales, cuya longitud promedio era de 4000 pies (1122

m), partiendo de pozos estratigráficos verticales. Se utilizaron datos sísmicos

tridimensionales (3D) para predecir la posición más probable de las arenas de canal

lejos de los pozos verticales.

Los estudios de yacimiento indican que la resistividad de las mejores arenas

productivas excede 500 ohm-m, mientras que la resistividad de las limolitas

Page 53: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

49

estratificadas no productivas generalmente es menor a 50 ohm-m. El éxito del pozo se

mide utilizando la fracción de la profundidad total medida con el mayor rango de

resistividad, hoy en día, un promedio de más del 75% de las secciones perforadas se

encuentra dentro de la arena productiva.

8.2.2. Geonavegacion de la Estructura Para la Identificación de Zonas de Interés

Las mediciones y las imágenes provenientes de un pozo vecino demuestran la forma

en que las mediciones azimutales pueden utilizarse para un adecuado emplazamiento

del pozo. La separación entre las resistividades azimutales y las obtenidas frente a la

barrena muestran al agujero, primero aproximándose a la capa de baja resistividad que

se encuentra a lo largo de la parte superior del hueco y posteriormente alejándose de la

misma, esto se puede ver con mayor facilidad en la imagen de resistividad. La capa de

baja resistividad, indicada por el color oscuro a lo largo de los lados izquierdo y

derecho del hoyo representa la parte superior del mismo. La resistividad incrementa de

3530 a 3560 pies, lo cual indica que el pozo va en la dirección correcta, tendiendo a

recobrar su posición en la capa de alta resistividad.

Figura 33. Geonavegacion de la zona de interés. (Oilfield Review, 2001)

Una vista en 3D de la misma imagen azimutal presenta el hueco con respecto a la

geología local, mostrandose un intervalo de 50 pies medidos para el agujero con

Page 54: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

50

diámetro de 8 ½ pulgadas. Los bordes litológicos, indicados mediante las líneas

verdes, se utilizan para calcular el buzamiento verdadero de las capas. Esta representa-

ción muestra el pozo desplazándose hacia arriba a través de una zona de transición,

desde la arena de alta resistividad (colores claros en el fondo del hueco, a la izquierda)

hacia una capa sin roca reservorio de baja resistividad (colores oscuros en la parte

superior del pozo a la derecha).

Figura 34. Imagen 3D de una sección del pozo. (Oilfield Review, 2001)

En este caso, el utilizar sólo mediciones convencionales no azimutales podría haber

arrojado una interpretación incorrecta. Si la medición de resistividad omnidireccional

frente a la barrena se usa para geonavegar, la lectura de 40 ohm-m entre 3545 pies y

3560 pies sugiere que el pozo se encuentra en una capa de limolita de baja resistividad,

improductiva. En cambio, los datos azimutales, particularmente en la imagen orientada

estructuralmente, indican que solamente se han penetrado unas cuantas pulgadas en la

capa de baja resistividad. Las mediciones azimutales combinadas con el buzamiento

real proporcionan la interpretación correcta.

8.3. Aplicación de la Interpretacion Estructural de un Yacimiento combinando las

diversas mediciones del servicio LWD

El modelado y la planeación realizados con anterioridad al trabajo de exploración,

reducen la incertidumbre de la perforación mediante la evaluación de la respuesta

esperada de los sensores LWD. Los datos azimutales e imágenes permiten que los

modelos petrofisicos y estructurales del yacimientos anteriores a la perforación sean

actualizados en tiempo real durante la perforación. La interpretación en tiempo real, en

base a los cambios observados en el yacimiento permite iniciar acciones correctivas de

geonavegación para ajustar la trayectoria del agujero, a fin de lograr un emplazamiento

Page 55: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

51

óptimo del pozo y una mayor productividad del mismo.

La información geológica derivada de las imágenes del agujero puede influir en las

decisiones en tiempo real para optimizar el emplazamiento y la terminación del pozo.

8.3.1. Análisis de los Modelos de Predicción para la Interpretación Estructural

del Yacimiento

En un pozo de desarrollo de gas situado en la región sur del Mar del Norte la

geonavegación, basada en un modelo de predicción en tiempo real, redujo con éxito la

incertidumbre en el posicionamiento del pozo. Las principales preocupaciones

respecto a la perforación de este pozo horizontal se relacionaban con la inseguridad en

el alivio estructural, el relativamente delgado yacimiento, 70 pies (121 m), y las

características petrofísicas indistintas de la unidad del yacimiento. Estas condiciones

podrían llevar a una posición incierta del hueco en el yacimiento y, por lo tanto,

incrementar el riesgo de perforar fuera de la parte superior o inferior del yacimiento en

la sección horizontal de 2500 pies (762 m). El pozo quedó emplazado dentro de 6

pulgadas verticales respecto del horizonte deseado. Después de perforar 1500 pies

(457 m) de la sección horizontal, el deslizamiento se hizo difícil, y se hizo un viaje de

barrena para bajar un conjunto de fondo de perforación rotativa, En ese momento la

incertidumbre en la posición de la barrena también había aumentado, y se generaron

muchos posibles escenarios estructurales con el software de modelado LWD durante la

pasada de la barrena.

8.3.1.1. Primer Modelado

Correlación de la pantalla de geonavegacion, en el escenario 1, las formaciones del

yacimiento se inclinan -2.7 grados y la trayectoria del pozo esta debajo del

yacimiento y se dirige hacia rocas carboníferas.

Page 56: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

52

Figura 35. Modelado 1. (Oilfield Review, 2001)

8.3.1.2. Segundo Modelado

En el modelo para el escenario 2, el buzamiento del yacimiento es de 0.75 grados y

el pozo se aproxima a la parte superior del yacimiento.

Figura 36. Modelado 2. (Oilfield Review, 2001)

Page 57: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

53

8.3.1.3. Tercer Modelado

En el modelado para el escenario 3, el buzamiento de la formación es de -1 grado,

con el pozo prácticamente paralelo a la estratificación. Una variación en buzamiento

tan pequeña como de 3.5 grados, entre los modelos 2 y 3 podrían haber ocasionado

que el pozo se saliera del yacimiento.

Figura 37. Modelado 3. (Oilfield Review, 2001)

8.3.1.4. Analisis del Registro LWD para el modelado final

Se uso una Presentación de los registros LWD para localizar la posición de la broca

en el yacimiento durante un viaje de barrena, durante este mismo viaje de barrena,

las imágenes del registro de densidad se generaron a partir de datos almacenados en

memoria, y la interpretación del buzamiento fue realizada por el equipo de

evaluación de activos que desarrolla sus tareas en las oficinas.

La información de buzamiento derivada de las imágenes estableció el modelo

estructural correcto y le proporcionó al operador una interpretación inequívoca de la

ubicación relativa del pozo en la formación antes de reanudar la perforación. Una

vez que se conoció la posición, se tomó la decisión de dirigir el pozo hacia abajo

para penetrar la parte inferior del yacimiento y asegurar el drenaje de las capas

inferiores. Las imágenes del registro de densidad también arrojaron información

importante relativa a las facies. El yacimiento es predominantemente una secuencia

Page 58: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

54

fluvial que contiene facies de frente de duna y superficie de deslizamiento de dunas.

Las facies de superficie de deslizamiento de dunas caracterizadas por buzamientos

de 20 a 30º, evidentes entre 4275 y 4350 pies generalmente proporcionan la mejor

permeabilidad. El buzamiento en dirección sur-oeste indica una dirección de

paleotransporte que concuerda con otros datos del campo.

Como análisis se obtuvo que el buzamiento estructural es de 1 grado al sur-este a

3850 pies, y la dirección del agujero es de 89 a 90 grados hacia el este.

Figura 38. Registro LWD corrido durante el viaje de la barrena. (Oilfield Review, 2001)

8.3.1.5. Modelado de Correlacion Final

El modelo de correlación muestra el modelo estructural final basado en buzamientos

derivados de la imagen del registro de densidad. La imagen del registro de densidad

anterior se muestra en su posición relativa a lo largo de la trayectoria de pozo.

Page 59: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

55

Figura 39. Modelado Final. (Oilfield Review, 2001)

8.4. Aplicación del Servicio LWD en el control de la Estabilidad de Pozos

Los procesos mecánicos de perforación en el fondo del pozo son demasiado complejos

para poder caracterizarlos mediante una simple medición. La experiencia demuestra que

al combinar las mediciones de fondo se logra una sinergia que permite entender mejor la

forma en la cual el proceso de perforación puede afectar el hoyo e influir en las

mediciones LWD.

Las imágenes LWD del hoyo, especialmente las imágenes de resistividad de mayor

resolución, proporcionan un medio para evaluar directamente las facies geológicas en el

fondo del pozo, fallas estructurales y fallas del agujero, tales corno fracturas y rupturas.

La adición de imágenes en tiempo real a los datos convencionales LWD puede alterar

dramáticamente y en forma importante la interpretación del registro y ayudar a

seleccionar las mejores operaciones correctivas para optimizar las operaciones de

perforación.

El proceso de perforación hace que el pozo sufra cambios con el tiempo. Los cambios

inducidos por la perforación van desde la invasión de la formación hasta fallas

mecánicas de la pared del pozo tales como fracturas y derrumbes. Durante la

perforación, es importante distinguir las características naturales de aquellas inducidas

Page 60: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

56

por el proceso de perforación, para así poder modificar el programa de perforación,

minimizar su impacto y asegurar la evaluación petrofisica exacta. Las imágenes del

agujero son esenciales para diagnosticar los cambios provocados por la perforación.

8.4.1. Uso de las Imágenes de Resistividad LWD

En muchos ambientes de arenas y lutitas la separación entre las curvas de resistividad

de lectura profunda y somera ocurre debido a la invasión conductiva y es una

indicación de que la formación es permeable, Sin embargo, la separación entre las

curvas también puede resultar de la anisotropía de resistividad con un elevado

buzamiento de la formación, de la proximidad de vetas compactas, de variaciones de

permeabilidad en yacimientos de carbonato, o de fractura de la formación por lodo

pesado o por una elevada densidad de circulación equivalente (ECD), en el último

caso, la separación entre las curvas puede servir como indicio prematuro de que un

problema no anticipado está ocurriendo en el yacimiento

La herramienta LWD usa las imagenes de resistividad para proporcionar imagenes con

diferentes profundidades de investigación. Estos datos se utilizan normalmente para el

análisis de invasión en la evaluación de formaciones, sin embargo, las imágenes del

hoyo generadas para cada profundidad de investigación pueden proporcionar

información adicional relativa a la influencia de la perforación en el pozo, y sobre

mediciones petrofisicas, en este caso, la resistividad de lectura somera se ve

sumamente afectada por el lodo conductor que llena los poros cercanos a la pared del

agujero. A diferencia de las características naturales es posible que parezca que las

características inducidas por la perforación desaparecen con el aumento de la

profundidad de investigación.

Identificar zonas como permeables erróneamente o pasar por alto las vetas compactas

pueden llevar a predicciones excesivamente optimistas de productividad, mientras que

no reconocer las rupturas de formación puede traer como consecuencia costosas

operaciones correctivas. La resistividad y las imágenes del registro de densidad

generadas en tiempo real proporcionan información adicional, necesaria para hacer

interpretaciones correctas.

Page 61: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

57

Figura 40. Imágenes LWD a 3 profundidades de investigación. (Oilfield Review, 2001)

Figura 41. Separación entre las curvas de resistividad. (Oilfield Review, 2001)

8.4.2. Identificacion de Fracturas y Mecanismos de Falla

La identificación de mecanismos de falla y de problemas de inestabilidad del pozo, y

la comprensión de cómo y porque ocurren son esenciales para el éxito de las

operaciones de perforación, el manejo adecuado de la estabilidad del pozo minimiza el

tiempo improductivo y es fundamental para la optimización de la perforación. Cuando

los esfuerzos que se generan en torno al pozo son superiores a la resistencia de la

Page 62: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

58

formación se producen deformaciones por esfuerzo de corte o de tensión irreversibles

en la zona vecina a la pared del pozo.

Las fallas del agujero provienen de tensiones existentes alrededor del mismo. Las

tensiones del campo lejano de la tierra (horizontal máxima, horizontal mínima y

vertical) se convierten en las tensiones del pozo (radial, axial y tangencial) en la pared

del hoyo.

Cuando estas tensiones exceden la resistencia de la formación, ocurren deformaciones

irreversibles por los esfuerzos de corte y por los esfuerzos de tracción existentes en la

formación cercana al hoyo. El peso del lodo se usa para controlar las tensiones del

agujero, la mayoría de las fuerzas geológicas que actúan en el pozo son compresivas y

producen fallas por esfuerzo de corte, otras fuerzas estructurales actúan para separar

los granos de roca resultando en fallas por esfuerzo de tracción, las fallas por esfuerzo

de corte se inician mediante dos tensiones ortogonales con distintas magnitudes,

mientras que las fallas por tracción se inician con un solo esfuerzo de tracción.

8.4.3. Relacion de Esfuerzos en el Pozo

Para describir los esfuerzos se usa un sistema de coordenadas cartesiano, un esfuerzo

es vertical (σv), y los otros dos esfuerzos ortogonales son horizontales, las magnitudes

de los dos esfuerzos horizontales se denominan esfuerzo horizontal minimo (σh) y

esfuerzo horizontal maximo (σH), el esfuerzo vertical tiene un comportamiento

aproximadamente lineal con la profundidad a dferencia de los esfuerzos horizontales

minimo y maximo quienes estan influenciados por la litologia y los modulos elasticos

de la roca. Estos esfuerzos se transmiten en el pozo en componentes de tension radial

(σr) y otras dos componentes de tensiones ortogonales que son axial (σa) y tangencial

(σt). La dirección de la tensión axial coincide con la del eje del agujero, mientras que

la dirección de la tensión tangencial sigue la circunferencia del pozo, la tensión

tangencial también se llama tensión circunferencial debido a su geometría, la tensión

radial se provoca por la presión del lodo y es controlada por el ingeniero de

perforación mientras que las tensiones axial y tangencial son controladas por los

esfuerzos de la roca.

Page 63: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

59

Figura 42. Componentes de esfuerzo en dos dimensiones. (Petroleum Related Rock

Mechanics-1992)

Figura 43. Relación de esfuerzos. (Oilfield Review, 2001)

8.4.4. Analisis de las Imágenes para el Diagnostico Geomecanico del Pozo

Las imágenes de las paredes del pozo generadas con herramientas LWD de

resistividad o de densidad-neutrón azimutal pueden utilizarse para la identificación de

fallas y el diagnostico de fracturas. Es posible determinar tanto la dirección de las

Page 64: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

60

fracturas como el modo de falla, permitiendo así un diagnostico y tratamiento mas

precisos.

Diversos son los factores que producen o contribuyen a producir fallas en la pared del

pozo. Las fallas por esfuerzo de tensión producidas como consecuencia de una

excesiva densidad de circulación equivalente (ECD) son muy comunes. El excesivo

peso de lodo, la acumulación de recortes en el espacio anular y las velocidades de

bajada de la tubería de revestimiento o de la columna de perforación en el pozo pueden

producir una alta ECD. A menudo, la verdadera causa de las fallas queda indefinida.

El estado de los esfuerzos alrededor del pozo incide en la eficiencia de la perforación y

en la estabilidad del pozo. La mayoría de las fuerzas geológicas que actúan sobre el

pozo son fuerzas compresivas y producen fallas por esfuerzo de corte. Otras fuerzas

estructurales actúan separando los granos de roca, lo que produce fallas por esfuerzo

de tensión. Los mecanismos de corte y de tensión pueden actuar independientemente,

como de hecho ocurre con mucha frecuencia. El peso del lodo y la química del fluido

de perforación suelen utilizarse para minimizar los efectos negativos que actúan en el

pozo.

Los mecanismos de falla presentan rasgos específicos asociados con fracturas que se

viasualizan en las imágenes de las paredes del pozo, cada modo de falla tiene un

régimen de presión único de alto o bajo peso de lodo o ECD. La tecnología de

generación de imágenes LWD, permite la identificación en tiempo real de los

mecanismos de falla potenciales y provee advertencias tempranas de problemas de

inestabilidad de pozo. Los perforadores pueden adoptar medidas correctivas para el

manejo de la inestabilidad del pozo en base al diagnostico de los mecanismos de fallas.

La aplicación de modelos geomecánicos que incorporan datos de imágenes y de

presión produce un impacto directo e inmediato sobre la optimización de la

perforación y sobre el diseño de la terminación del pozo. Los resultados de estos

modelos ayudan a generar recomendaciones acerca de la implementación de

estrategias de remediación que quizás no hayan sido consideradas. La capacidad de

distinguir entre rasgos naturales y propiedades de la formación y transformaciones

artificiales inducidas por la perforación, permite mejorar tanto la interpretación

petrofisica como la interpretación geológica. La identificación de fracturas naturales,

Page 65: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

61

fuente de potencial entrada o perdida de fluido, puede ser importante para el manejo

del riesgo de la perforación y de los peligros que comprometen la seguridad.

Figura 44. Imágenes de las rupturas del pozo. (Oilfield Review, 2001)

En la grafica anterior se muestra el impacto de la variación del peso del lodo en las

fallas causadas por esfuerzos de corte y de tracción. En un pozo vertical perforado en

una cuenca con esfuerzos horizontales en desequilibrio, las fallas causadas por

esfuerzos de corte y de tracción se relacionan con las diferencias en el peso de lodo

circulante. La tensión horizontal máxima es aproximadamente 20% mayor que la

tensión horizontal minima. En la sección superior de la imagen se observan amplias

rupturas. Además se observa una fractura vertical desplazada 90° respecto de la

ruptura. En la sección inferior se detectan fracturas causadas por esfuerzos de tracción.

La variación del peso del lodo de un valor estático de 9.5 ppg a un valor circulante de

12.5 ppg, provoco fallas tanto por esfuerzo de corte como de tracción.

Page 66: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

62

8.4.5. Contribución de la Medicion del ECD Mediante LWD para un mejorAnalisis y Control de la Estabilidad del Pozo

Los datos de presión anular adquiridos durante la perforación pueden ayudar a calibrar

los parámetros de tensión y de resistencia de la formación. La integración de las

imágenes de resistividad con las mediciones continuas del ECD les permite a los

geólogos e ingenieros estudiar los procesos dinámicos, tales como la acumulación de

detritos y la evolución de la condición geomecánica del agujero. Estos datos pueden

ayudar a distinguir no sólo los cambios causados por la perforación junto con la

profundidad, azimut y extensión de la falla sino también el mecanismo de falla del

agujero. El reconocimiento de las fracturas causadas por la perforación y el

entendimiento de su influencia en las mediciones de perfilaje mejora en gran medida la

interpretación geológica y petrofisica. Más aún, el diagnóstico correcto es esencial

para identificar problemas y aplicar las acciones correctivas apropiadas para optimizar

la operación de perforación. En muchos pozos de alcances extendidos y horizontales

con margen estrecho entre la presión intersticial y el gradiente de fractura, como en

pozos situados en aguas profundas, la inestabilidad del agujero es inevitable. En estos

casos la optimización de la perforación se centra en el monitoreo y el manejo

(minimización) de la inestabilidad mediante el control de la presión de circulación y

del peso del lodo.

El reconocimiento de las fracturas inducidas por la perforación en un pozo horizontal

conduce a reducir las velocidades de los viajes a fin de asegurar que las presiones de

fluencia Suaveo y de surgencia se mantengan en un mínimo, y que se utilicen los

procedimientos correctos de limpieza del agujero para evitar una ruptura de formación

que se pueda tornar inmanejable.

Los mecanismos de falla por esfuerzo de corte y de tracción pueden, y la mayoría de

las veces lo hacen, actuar independientemente. El entendimiento de la relación entre

las tensiones que afectan el agujero proporcionan información sobre la resistencia de la

formación; información que es especialmente importante para perforar agujeros

horizontales y con marcada desviación. Muchos mecanismos de falla tienen

características propias de fracturas que son aparentes en las imágenes del agujero, y

cada mecanismo de falla tiene un régimen de presión de peso de lodo (o ECD) alto o

Page 67: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

63

bajo. Las imágenes LWD junto con las mediciones de la densidad equivalente de

circulacion medidas tambien con la herramienta LWD permiten identificar

inmediatamente y en tiempo real los mecanismos potenciales de falla, y advierten

oportunamente acerca de los problemas de estabilidad del pozo. Sobre la base del

diagnostico de eventos asociados, el ingeniero de perforación puede tomar las acciones

correctivas pertinentes para manejar la inestabilidad del agujero. La aplicación de

modelos geomecánicos que incorporan datos de imágenes y presión tiene un impacto

directo e inmediato en la optimización de la perforación y terminación de pozos, los

resultados que provienen de estos modelos pueden también brindar recomendaciones

para estrategias correctivas que, de otra forma, no podrían ser consideradas. La

validación de los perfiles del estado de los esfuerzos y de la resistencia de la

formación, permite utilizar los resultados del modelo para la planificación de futuros

pozos. La capacidad de distinguir entre las características naturales y las propiedades

de la formación, y los eventos inducidos por la perforación, mejora tanto las

interpretaciones petrofísicas como las geológicas. El reconocimiento de las fracturas

naturales, son una fuente potencial de entrada de fluido, puede ser importante en el

manejo del riesgo de la perforación y de los eventos relativos a la seguridad.

Figura 45. Sistema integrado de imágenes. (Oilfield Review, 2001)

Page 68: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

64

9. EVALUACION ECONOMICA

El estudio de evaluación económica es un factor muy importante para analizar la

rentabilidad de los proyectos.

Las inversiones y por lo tanto la producción de bienes y servicios, no deben hacerse como

una aventura, sino que deben tener una sólida base en la que se apoyen. Esta base es la

evaluación de proyectos; por supuesto antes de evaluar hay que formular de manera muy

clara el proyecto.

Uno de los aspectos más importantes de la formulación es el estudio de mercado, el cual

debe describir las cantidades que se demandan así como otros datos básicos sobre

proveedores, competencia, etc., sin embargo normalmente el que desarrolla proyectos no

tiene la función de realizar esta actividad, ya que para ello generalmente existen personas

o empresas expertas dedicadas a efectuar estudios de mercado.

De igual forma el estudio técnico tiene como objetivo determinar la función de producción

óptima para la utilización eficiente de los recursos disponibles para la fabricación de los

bienes o prestación de servicios que se desean. La primera parte del estudio técnico es la

determinación del tamaño óptimo del sector, el cual está asociado a una serie de factores

como son: el mercado, los recursos financieros disponibles, así como la tecnología

imperante.

Otro aspecto importante a considerar es el organizativo, ya que la escogencia de una

determinada opción puede implicar una figura organizativa distinta. Todos los aspectos

administrativos se deben estudiar de manera exhaustiva a fin de definir que actividades

serán contratadas y cuales se realizarán en la empresa, que al final es lo que definirá la

estructura organizativa. Finalmente el estudio técnico recoge la parte jurídica, ya que es

necesario conocer la legislación vigente que pueda impactar el proyecto.

El estudio económico determina los costos totales en que incurrirá el proyecto,

clasificándolos en costos de producción, administración, de ventas, financieros, etc.

Las inversiones que la empresa requiere son también de análisis en el estudio económico,

las cuales son básicamente tres: inversiones en activo fijo (tangible), inversiones en

activos intangibles, ambas sujetas a depreciación y amortización, e inversión en capital de

trabajo.

Page 69: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

65

Ayuda mucho en el estudio económico, el desarrollo del punto de equilibrio, ya que

presenta una idea de los costos, ingresos por ventas y costos total con base en el nivel de

producción.

Finalmente el estudio económico debe señalar los estados de resultados,

fundamentalmente el Estado de Ganancias y Pérdidas y el Balance General, pero es

indispensable y será con el que se hará la evaluación económica EL FLUJO DE CAJA

PROYECTADO.

La evaluación económica viene a definir la rentabilidad del proyecto y para ello se utilizan

fundamentalmente la Tasa Interna de Retorno (TIR) y el Valor Presente Neto (VPN), el

cual considera un costo de capital o tasa de descuento, y ambas técnicas suponen que las

ganancias se reinvierten en su totalidad y que al reinvertirse ganan la misma tasa de

descuento a la cual fueron calculadas.

El método del Valor Presente Neto es muy utilizado por dos razones, la primera porque es

de muy fácil aplicación y la segunda porque todos los ingresos y egresos futuros se

transforman a monedas de hoy y así puede verse, fácilmente, si los ingresos son mayores

que los egresos. Cuando el VPN es menor que cero implica que hay una pérdida a una

cierta tasa de interés o por el contrario si el VPN es mayor que cero se presenta una

ganancia. Cuando el VPN es igual a cero se dice que el proyecto es indiferente. La

condición indispensable para comparar alternativas es que siempre se tome en la

comparación igual número de años, pero si el tiempo de cada uno es diferente, se debe

tomar como base el mínimo común múltiplo de los años de cada alternativa.

La Tasa Interna de Retorno es aquélla tasa que está ganando un interés sobre el saldo no

recuperado de la inversión en cualquier momento de la duración del proyecto. En la

medida de las condiciones y alcance del proyecto estos deben evaluarse de acuerdo a sus

características, con unos sencillos ejemplos se expondrán sus fundamentos. Esta es una

herramienta de gran utilidad para la toma de decisiones financiera dentro de las

organizaciones.

Page 70: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

66

Recuérdese que los criterios de aceptación al usar estas técnicas son:

Técnica Aceptación Rechazo

VPN >= 0 <0

TIR >= TMAR < TMAR

Tabla 2. valores de aceptacion de VAN y TIR.

En este texto el proyecto desarrollado amerita realizar el estudio de evaluación económica

en las etapas de Exploración y Completacion así como la de Desarrollo, para realizar una

comparacion detallada y por lo tanto una mejor interpretacion.

En la etapa de Exploracion se determinaran los costos de perforacion del pozo, el primero

con el uso de herramientas convencionales (sin LWD), y el segundo con el uso adicional

de la herramienta LWD a las herramientas convencionales.

Ademas es importante añadir que en la parte la evaluacion economica de este proyecto se

toma como base los datos y la imformacion que contiene el Paper de la SPE 107661,

Optimun Horizontal Well Placemenet in Very Low Resistivity Reservoir With a

Directional and Deep Logging-While-Drilling Technology. Desde el cual se realizaron

estudios y proyecciones estimadas para la etapa de Exploracion, y principalmente para la

etapa de Desarrollo.

9.1. Etapa de Exploracion

El campo yanyacu esta localizado en la parte Nor-Este de la cuenca sedimentaria del

marañon, en una latitud sur de 4º y 53 min y una latitud Oeste de 74º y 56 min, dentro de

los bordes del bloque 8 operado por la Empresa Pluspetrol Norte S.A.

Page 71: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

67

Figura 46. Mapa de locación mostrando el campo yanayacu.(Paper SPE 107661)

Basandose en información sismica y de pozo, la configuración estructural del campo

yanayacu puede ser descrito como una estructura anticlinal con orientación Norte-Sur,

con aproximadamente 20 Km de largo y 5Km de ancho.

Dos reservorios principales son conocidos en el campo yanayacu, “Vivian”, el cual

corresponde a la formación Vivian y “Pona” el cual corresponde al miembro superior de

la formación Chonta. El reservorio Vivian constituye el principal objetivo de

producción de pozos perforados en el area.

La parte superior del reservorio Vivian esta compuesto por arenas discontinuas de grano

medio a fino, estas arenas se depositaron en el tope del reservorio principal, el cual esta

compuesto por arenas de grano medio a grueso con una mejor continuidad lateral y

vertical, asi como mejores propiedades de porosidad y permeabilidad. Este reservorio

esta compuesto por depositos de arena generados por sistemas de canales de ambiente

fluvial.

El principal cuerpo de arena constituye el objetivo en la navegación del pozo Yanayacu

1202H.

Page 72: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

68

Figura 47. Mapa estructural en el reservorio Vivian, mostrando la ubicación del pozoyanayacu 1202H. (Paper SPE 107661)

Las arenas del reservorio Vivian son conocidas por presentar rangos de baja resistividad

y muy bajos contrastes de resistividad en rocas de reservorio productivas y no

productivas, según los datos del pozo los rangos de alta resistividad para la zona

productiva en el pozo YA 1202H son de alrededor de 2 ohm-m, y para las zonas de

reservorio no productivo las expectativas del rango de resistividad muestran alrededor de

0.6 ohm-m.

Los rangos de baja resistividad y condiciones de bajo contraste de resistividades

constituyen un reto para el desarrollo de las campañas de perforación horizontal.

Los registros convencionales proveen profundidades de investigacion someras y en una

sola dirección, el cual en condiciones de reservorio semejantes no brindan una clara

definición entre arenas productivas y no productivas y no pueden anticipar ni distinguir

la dirección de aproximación hacia los principales cuerpos o contactos de fluidos, por lo

tanto esta tecnología no es considerada apropiada para asegurar el posicionamiento

optimo de una sección lateral dentro del reservorio.

Como una alternativa disponible para permitir una ejecución exitosa del pozo Yanayacu

1202H, una nueva tecnología LWD fue desarrollada con los siguientes objetivos:

Page 73: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

69

1. Perforar exitosamente 400m de una sección horizontal en 4 m de espesor de bajaresistividad en la zona de interés.

2. Navegar en la mitad de la ventana de navegación, sin salirse de ella.

3. Drenar eficientemente el reservorio Vivian en la parte central del campoYanayacu, para incrementar el factor de recuperación.

4. No tocar la zona de baja resistividad, debajo de la zona de interés, el cual tieneinfluencia en el retraso de los procesos de influjo de agua (barrera depermeabilidad).

5. Perforar la sección horizontal en un periodo máximo de 7 días.

9.1.1. Analisis Economico

Para realizar un estudio detallado de evaluación económica en esta etapa se realizo un

estimado de costos de cada uno de los procesos involucrados, el cual tiene como guia

el Estimado Costos para el Pozo 8-2-38XC YANAYACU el cual se consulto en la

web. Además para entender los resultados y analizar la viabilidad del proyecto este

estudio fue dividido en dos casos, el primero es un estimado de la ejecución del

proyecto basado en datos históricos, estudios de simulación, así como un pronóstico de

eventos basados en el conocimiento del Área y con el uso de herramientas

convencionales sin LWD, y que en este estudio esta considerado como “Prognosis” el

cual servira de sustento economico para la evaluacion economica del proyecto

ejecutado sin la herramienta LWD. El segundo caso se basa en resultados obtenidos en

las etapas de exploración y desarrollo que en este estudio esta conciderado como

“Real”, el cual servira de sustento economico para la evaluacion economica del

proyecto ejecutado con la herramienta LWD.

9.1.1.1. Estimado de Costos del Proyecto sin LWD

El contenido de todos los datos mostrados en el siguiente esquema son estimaciones

de los costos de cada uno de los procesos involucrados en la perforacion de un pozo,

asi mismo para este caso como es razonable no se esta conciderando el costo de la

herramienta LWD.

Page 74: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

70

Tasa de Seccion CostoITEM DESCRIPCION DEL PROCESO

costo($/m) (m) sin LWD

1 Plataforma y Helipuertos 2729529

2 Forros de Superficie 533 1300 779993

3 Completacion de Forros de Superficie 191067

4 Lodo de Perforacion 122 3969 545906

5 Equipo de Perforacion 3495435

6 Gastos Departamentales 533350

7Brocas 17.5'', 12.25'', 8.5'', SeccionHorizontal. 317444

8 Forros Intermedios 9.625'' 577 1880 1220587

9 Completacion de Forros Intermedios 9.625'' 136476

10 Transportes 4367247

11 Pago por Alquiler de Equipos 696849

12 Personal contratado 272953

13 Baleo 81886

15 Registros Electricos 366576

16 Forros de Produccion 402 389 351884

17 Completacion de Liner de Produccion 242655

18 Cabezal de Produccion 104268

19 Tuberia de Produccion 179 3969 799717

20 Combustibles y Lubricantes 115459

21 Depreciasion del Equipo de Apoyo 116824

22 Completacion 425807

23 Seguro de Equipo y Material 108089

24 Tecnologia LWD 0

TOTAL 18000000

Tabla 3. Costos de las operaciones de perforacion

DEPRECIACION

ITEM TANGIBLES INTANGIBLES

1 2729529

2 779993

3 191067

4 545906

7 317444

8 1220587

9 136476

16 351884

17 242655

18 104268

19 799717

21 116824

23 108089

TOTAL 7536350 108089

Tabla 4. Costos de tangibles e Intangibles

La Depreciacion de los tangibles a 20 años sera de: $ 376818 /Año

Page 75: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

71

9.1.1.2. Estimado de Costos del Proyecto con LWD

Para el estimado de costos del proyecto usando la herrramienta LWD, se esta

conciderando un estimado de $2000000 del costo de la herramienta que seran

añadidos al estimado de costos de perforacion convencional. Tomando en cuenta las

ventajas de esta herramienta es que se esta conciderando una reduccion en los dias

de perforacion debido a que esta herramienta LWD brinda un mayor y mejor

conocimiento de la trayectoria del pozo, de las formaciones atravezadas, de la

estabilidad del pozo, asi como tambien mejores y mas rapidas operaciones y

decisiones durante la perforacion.

Tomando en consideracion todo lo descrito anteriormente, se grafico un curva de

avanze de perforacion comparando los casos “Real” y “Prognosis” descritos

anteriormente, el cual servira para calcular los ahorros generados en la reduccion de

dias de perforacion gracias al uso de la herramienta LWD.

Figura 48. Curva de avance de perforacion.

Page 76: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

72

A continuación se detalla el estimado de costos de la perforación del pozo realizado

para ambos casos.

DATOS DE ENTRADA

PROGNOSIS REAL

1 54 días de Perforacion 52 días de Perforacion

2 TD = 3969 m TD = 3969 m

Tabla 5. Dias de perforacion.

Tasa de Seccion Costo CostoITEM DESCRIPCION DEL PROCESO

costo($/m) (m) Prognosis Real

1 Plataforma y Helipuertos 2729529 2729529

2 Forros de Superficie 533 1300 779993 779993

3 Completacion de Forros de Superficie 191067 191067

4 Lodo de Perforacion 122 3969 545906 545906

5 Equipo de Perforacion 3495435 3365974

6 Gastos Departamentales 533350 513596

7Brocas 17.5'', 12.25'', 8.5'', SeccionHorizontal. 317444 317444

8 Forros Intermedios 9.625'' 577 1880 1220587 1220587

9Completacion de Forros Intermedios9.625'' 136476 136476

10 Transportes 4367247 4205497

11 Pago por Alquiler de Equipos 696849 671040

12 Personal contratado 272953 262844

13 Baleo 81886 81886

15 Registros Electricos 366576 366576

16 Forros de Produccion 402 389 351884 351884

17 Completacion de Liner de Produccion 242655 242655

18 Cabezal de Produccion 104268 104268

19 Tuberia de Produccion 179 3969 799717 799717

20 Combustibles y Lubricantes 115459 115459

21 Depreciasion del Equipo de Apoyo 116824 116824

22 Completacion 425807 425807

23 Seguro de Equipo y Material 108089 108089

24 Tecnologia LWD 2000000 2000000

TOTAL 20000000 19653117

AHORRO 346883

Tabla 6. Costos de perforacion con LWD.

Page 77: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

73

DEPRECIACION

ITEM TANGIBLES INTANGIBLES

1 2729529

2 779993

3 191067

4 545906

7 317444

8 1220587

9 136476

16 351884

17 242655

18 104268

19 799717

21 116824

23 108089

TOTAL 7536350 108089

Tabla 7. Costos de tangibles e intangibles con LWD.

La Depreciacion de los tangibles a 20 años sera de: $ 376818 /Año

El Análisis de Costo Real de la perforación se realizo en base a la curva de avance de

perforación para el pozo YANAYACU 1202H en el que realizando una comparación

en los tiempos (días) de perforación entre la prognosis y lo real, al usar la

herramienta LWD como resultado se obtuvo 2 días menos de perforación lo que

genero ahorros de aproximadamente $ 346883.

9.2. Etapa de Desarrollo

Luego de ser perforado el Pozo Yanayacu 1202H se realizo un estudio detallado de la

rentabilidad del proyecto y la vida util del pozo.

Para estimar la declinación de la producción del pozo Yanayacu 1202H se tomo como

referencia la informacion del Paper SPE 107661, Optimun Horizontal Well Placemenet

in Very Low Resistivity Reservoir With a Directional and Deep Logging-While-Drilling

Technology. en donde se visualizan dos casos. El primero representa el estimado de la

producción basándose en simulación de reservorios, el segundo es la declinación de la

producción basándose en datos reales del pozo posteriores a la etapa de Exploracion.

Para hacer el análisis de declinación se tomo como datos las producciones iniciales y el

Page 78: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

74

corte de agua en ambos casos, en el caso de la prognosis se tiene 2200 BPD y 75 % de

corte de agua (CA) y para el caso real es de 3500 BPD con 0.03% de corte de agua

(CA).

9.2.1. Modelo de Declinación de la Producción

Para poder saber el valor del gas y del petróleo en un tiempo determinado, el predecir

la producción de los mismos es muy importante.

Esto es muy importante para poder determinar los precios de los hidrocarburos y para

tener una idea clara acerca del pronóstico de la producción de los mismos.

Un método para saber la cantidad de hidrocarburo producido en una escala de tiempo

determinado es el método de la curva de declinación, el cual no es más que el trazo de

una curva para así tener una idea del comportamiento histórico de la producción de

hidrocarburos a través del tiempo.

Se tienen tres tipos de curvas de declinación de la producción, las cuales son:

1. Modelo de Declinación Exponencial.

2. Modelo de Declinación Hiperbólica.

3. Modelo de declinación Armónica.

Esta declinación se debe al resultado que producen todos los mecanismos de empuje

tanto naturales como los inducidos que conducen a una disminución en la presión del

yacimiento y esta a su vez se relaciona con los cambios generados por la expansión del

petróleo levemente compresible.

El modelo usado en este caso es el de Declinación Hiperbólica cuya ecuación

utilizada es la siguiente:

Q=Qi (1+ Di*bt) exp (-(1/b))

El termino b representa a una constante de declinación la cual es positiva y está en un

rango de 0 a 1.

Page 79: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

75

En este caso, Di es la velocidad de declinación en el momento en que el gasto qi

predomina, y el tiempo t es el lapso que tarda en reducirse el gasto desde qi a q.

No todos los pozos productores exhiben declinación exponencial durante la

depletación. En muchos casos se puede observar una declinación hiperbólica gradual

donde el comportamiento de gasto contra tiempo es estimada de mejor forma que a

partir de la solución analítica.

La declinación hiperbólica es el resultado de energías (mecanismos de empuje)

naturales o artificiales que disminuyen la reduccion de presión comparado con la

reduccion causada por la expansión de un aceite ligeramente compresible, este modelo

aplica de gran manera en los siguientes casos:

Gas en solución

Expansión del casquete de gas

Empuje de agua

9.2.2. Modelo de Declinación Hiperbólica para el Analisis de la tendencia de laProduccion

En esta sección se realiza la comparación de declinación Hiperbólica entre los casos de

Declinación Hiperbólica Real y Declinación Hiperbólica de Prognosis, para lo cual se

uso lo siguientes datos:

1. Q0 Real = 3500 BPD

2. Q0 Prognosis = 2200 BPD

3. b = 0.5

4. D = 0.2

5. t = 20 Años

Page 80: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

76

A partir de los datos mostrados se obtuvieron los siguientes resultados:

Tabla 8. Declinacion de la produccion en casos real y prognosis.

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25

TIEMPO (años)

Q

DECLINACION HIPERBOLICA REAL DECLINACION HIPERBOLICA DE PROGNOSIS

Figura 49. Curvas de declinacion de la produccion.

Como se puede visualizar en la grafica de las declinaciones de producción para ambos

casos, el estimado de la declinación Real esta sobre el estimado de la declinación para

la Prognosis.

Qo prognosis Qo real T (años) b D Qt real Qt prognosis

2200 3500 1 0.5 0.2 3500 2200

2 2893 1818

3 2431 1528

4 2071 1302

5 1786 1122

6 1556 978

7 1367 859

8 1211 761

9 1080 679

10 970 609

11 875 550

12 794 499

13 723 455

14 662 416

15 608 382

16 560 352

17 518 325

18 480 302

19 446 281

20 416 262

Page 81: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

77

Además de los estimados de declinación se realizo un Estimado de corte de agua a

partir de los datos que se muestran en el Paper para los casos Real y Prognosis.

Con el cual se pudo realizar en siguiente cuadro con su respectivo esquema de curvas:

T (años) CA Real CA Prog

1 0.35 0.75

2 0.57 0.82

3 0.73 0.85

4 0.8 0.86

5 0.82 0.87

6 0.84 0.88

7 0.85 0.89

8 0.86 0.9

9 0.87 0.91

10 0.88 0.92

11 0.89 0.92

12 0.9 0.92

13 0.91 0.92

14 0.91 0.92

15 0.91 0.92

16 0.91 0.92

17 0.91 0.92

18 0.91 0.92

19 0.91 0.92

20 0.91 0.92

Tabla 9. Estimado del corte de agua en casos real y prognosis.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

Tiempo (años)

CA

CA REAL CA PROGNOSIS

Figura 50. Curvas de estimacion del corte de agua.

Page 82: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

78

9.2.3. Estado de Perdidas y Ganancias y Flujo de Caja Economico

Para realizar este estudio con mayor detalle y presicion, se consultaron diversas

fuentes actualizadas de las cuales se consideraron algunos parametros que definiran la

evaluacion economica del proyecto en desarrollo. Estas fuentes se encuentran

direccionadas en la bibliografia de este estudio.

Entre los parametros principales tenemos los siguientes:

- Precio del petroleo referencial y fijo para la vida util del pozo de $70/Barril.

- Precio del costo de produccion, tratamiento y reinyeccion de agua de $2/Barril.

- La proyeccion de petroleo y agua se hizo a 20 años, tomando los datos de la

declinacio hiperbolica usada para los casos descritos anteriormente.

- Precio de produccion, transporte, comercializacion y gastos por contratos

ambientales y sociales con el estado de $14/Barril.

- La depreciacion de los tangibles e intangibles se calculo de los estimados de costos

en la estapa de Exploracion.

- Los impuestos a las utilidades se estimo en 30%.

- La tasa de rentabilidad del sector se considero en 25%.

- La empresa asume el 100% de la inversion, el monto de la inversion se describe en

el estimado de costos detallado anteriormente.

9.2.3.1. Analisis Economico del Proyecto sin el uso de LWD

El analisis economico del proyecto sin el uso de la herramienta LWD se sustenta en

la simulacion de reservorios usada para realizar una proyeccion de la produccion del

pozo, seguido de estos datos, se calculo la produccion del pozo segun el modelo de

declinacion hiperbolica tomada para este estudio, del cual se obtubieron como datos

la proyeccion de la produccion del pozo a 20 años de donde realizando los calculos

corresondientes en hojas de excel se comparan los ingresos con los costos por año

dado por la produccion del pozo estimada y por los parametros definidos

anteriormente.

Page 83: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

79

Año Precio $/bbl Ingreso ($) Depreciacion Costo Total Utilidad sin Impuesto Utilidad

BOPD CA (%) NETO Agua Petroleo Costo de Tangibles Intangibles Total Impuesto 30% Neta

Produccion

exploracion

desarrollo

1 2200 0.75 550 70 14052500 1204500 3011250 4215750 376818 108089 484907 4700657 9351843 2805553 6546290

2 1818 0.82 327 70 8361818 1088364 1791818 2880182 376818 0 376818 3256999 5104819 1531446 3573373

3 1528 0.85 229 70 5855208 947986 1254688 2202674 376818 0 376818 2579491 3275717 982715 2293002

4 1302 0.86 182 70 4656450 817254 997811 1815065 376818 0 376818 2191883 2464567 739370 1725197

5 1122 0.87 146 70 3728214 712867 798903 1511770 376818 0 376818 1888588 1839626 551888 1287738

6 978 0.88 117 70 2997867 628124 642400 1270524 376818 0 376818 1647342 1350525 405157 945367

7 859 0.89 95 70 2415273 558336 517559 1075895 376818 0 376818 1452712 962561 288768 673793

8 761 0.9 76 70 1944983 500138 416782 916920 376818 0 376818 1293738 651245 195373 455871

9 679 0.91 61 70 1561389 451068 334583 785651 376818 0 376818 1162469 398920 119676 279244

10 609 0.92 49 70 1245651 409285 266925 676211 376818 0 376818 1053028 192623 57787 134836

11 550 0.92 44 70 1124200 369380 240900 610280 376818 0 376818 987098 137102 41131 95972

12 499 0.92 40 70 1019683 335039 218503 553542 376818 0 376818 930359 89323 26797 62526

13 455 0.92 36 70 929091 305273 199091 504364 376818 0 376818 881181 47910 14373 33537

14 416 0.92 33 70 850057 279304 182155 461459 376818 0 376818 838277 11780 3534 8246

15 382 0.92 31 70 780694 256514 167292 423806 376818 0 376818 800623 -19929 -5979 -13950

16 352 0.92 28 70 719488 236403 154176 390579 376818 0 376818 767397 -47909 -14373 -33536

17 325 0.92 26 70 665207 218568 142544 361112 376818 0 376818 737930 -72723 -21817 -50906

18 302 0.92 24 70 616845 202678 132181 334859 376818 0 376818 711676 -94831 -28449 -66382

19 281 0.92 22 70 573571 188459 122908 311367 376818 0 376818 688185 -114613 -34384 -80229

20 262 0.92 21 70 534697 175686 114578 290264 376818 0 376818 667081 -132385 -39715 -92669

Costo Operativo DepeciacionProduccion de Petroleo

Tabla 10. Estado de perdidas y ganancias del proyecto sin LWD.

INGRESOS (vs) COSTOS

-1000000

1000000

3000000

5000000

7000000

9000000

11000000

13000000

15000000

0 5 10 15 20 25

AÑOS

$

INGRESOS

COSTOS

El limite economico al precio de crudoreferencial para el Pozo Yanayacu1202H, realizado sin la herramientaLWD se estima en 14 años.

Figura 51. Curvas de ingresos y costos sin LWD.

Page 84: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

80

Al realizar la comparacion de los ingresos versus los costos se calcula que la vida

util del pozo es hasta los 14 años, despues del cual los costos superan a los ingresos

y por consiguiente desde ese momento el proyecto ya no resulta rentable.

Por tal motivo, para el calculo del flujo de caja economico se considera el proyecto

solo hasta los 14 años.

Año Ingresos Costos Impuesto Inversion Valor Flujo de

Produccion (-30%) Residual Caja

0 -18000000 -18000000

1 14052500 4215750 2805553 7031197

2 8361818 2880182 1531446 3950191

3 5855208 2202674 982715 2669820

4 4656450 1815065 739370 2102014

5 3728214 1511770 551888 1664556

6 2997867 1270524 405157 1322185

7 2415273 1075895 288768 1050610

8 1944983 916920 195373 832689

9 1561389 785651 119676 656062

10 1245651 676211 57787 511654

11 1124200 610280 41131 472789

12 1019683 553542 26797 439344

13 929091 504364 14373 410354

14 850057 461459 3534 2260905 2645968

Tabla 11. Flujo de caja economico del proyecto sin LWD.

VAN ($6,014,184.49)

TIR 8.953%

9.2.3.2. Analisis Economico del Proyecto con el uso de LWD

Luego de la etapa de exploracion en el cual se uso la herramienta LWD, los

resultados de produccion iniciales muestran una produccion mas alta y un valor de

corte de agua mucho menor en comparacion con lo estimado en la prognosis. Estos

valores repercuten tambien en los calculos realizados para la declinacion hiperbolica

de la produccion con proyeccion a los 20 años de vida util del proyecto.

Page 85: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

81

Año Precio $/bbl Ingreso Depreciacion Costo Total Utilidad sin Impuesto Utilidad

BOPD CA(%) NETO Produccion Produccion Costo de Tangibles Intangibles Total Impuesto 30% Neta

Agua Petroleo Produccion

exploracion

desarrollo

1 3500 0.35 2275 70 58126250 894250 12455625 13349875 376818 108089 484907 13834781.52 44291468.48 11072867 44291468

2 2893 0.57 1244 70 31783945 1203777.3 6810845.25 8014623 376818 0 376818 8391440 23392504 5848126 23392504

3 2431 0.73 656 70 16770254 1295480 3593626 4889106 376818 0 376818 5265923 11504330 2876083 11504330

4 2071 0.8 414 70 10582810 1209464 2267745 3477209 376818 0 376818 3854027 6728783 1682196 6728783

5 1786 0.82 321 70 8213814 1069100 1760103 2829203 376818 0 376818 3206020 5007794 1251948 5007794

6 1556 0.84 249 70 6360928 954139 1363056 2317195 376818 0 376818 2694013 3666915 916729 3666915

7 1367 0.85 205 70 5239028 848224 1122649 1970872 376818 0 376818 2347690 2891338 722834 2891338

8 1211 0.86 170 70 4331747 760266 928232 1688497 376818 0 376818 2065315 2266432 566608 2266432

9 1080 0.87 140 70 3587220 685908 768690 1454598 376818 0 376818 1831416 1755804 438951 1755804

10 970 0.88 116 70 2974020 623128 637290 1260418 376818 0 376818 1637236 1336784 334196 1336784

11 875 0.89 96 70 2459188 568488 526969 1095456 376818 0 376818 1472274 986914 246728 986914

12 794 0.9 79 70 2028670 521658 434715 956373 376818 0 376818 1333191 695479 173870 695479

13 723 0.91 65 70 1662539 480289 356258 836547 376818 0 376818 1213365 449174 112293 449174

14 662 0.91 60 70 1522269 439767 326201 765967 376818 0 376818 1142785 379484 94871 379484

15 608 0.91 55 70 1398096 403894 299592 703486 376818 0 376818 1080304 317792 79448 317792

16 560 0.91 50 70 1287720 372008 275940 647948 376818 0 376818 1024766 262954 65739 262954

17 518 0.91 47 70 1191141 344107 255245 599352 376818 0 376818 976169 214972 53743 214972

18 480 0.91 43 70 1103760 318864 236520 555384 376818 0 376818 932202 171558 42890 171558

19 446 0.91 40 70 1025577 296278 219767 516044 376818 0 376818 892862 132715 33179 132715

20 416 0.91 37 70 956592 276349 204984 481333 376818 0 376818 858150 98442 24610 98442

Costo Operativo DepeciacionProduccion de Petroleo

Tabla 12. Estado de perdidas y ganancias del proyecto con LWD.

INGRESOS (vs) COSTOS

0

10000000

20000000

30000000

40000000

50000000

60000000

0 5 10 15 20 25

AÑOS

$

INGRESOS

COSTOS

La vida util del Pozo Yanayacu 1202Husando la herramienta LWD segun laproyeccion realizada con el precio depetroleo fijo de $70 se estima en 20años.

Figura 52. Curvas de ingresos y costos con LWD.

Page 86: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

82

En los calculos y la comparacion de las curvas de los ingresos versus los costos se ve

claramente que en los primeros años de produccion los ingresos superan claramente

los costos en mayor valor momentario que el proyecto sin el uso de la herramienta

LWD, posteriormente conforme la produccion va cayendo segun la tendencia de la

curva de declinacion hiperbolica, y el corte de agua va en aumento, los ingresos se

reducen y tienen a hacercarse a los costos pero aun asi el proyecto logra una vida util

de 20 años.

Posteriormente a este analisis se realiza el flujo de caja correspondiente a este

proyecto con el cual se tienen los siguientes resultados:

Año Ingresos Costos de Impuesto Inversion Valor Flujo de

Produccion (-30%) Residual Caja

0 -19653117 -19653117

1 58126250 13349875 11072867 33703508

2 31783945 8014623 5848126 17921196

3 16770254 4889106 2876083 9005065

4 10582810 3477209 1682196 5423405

5 8213814 2829203 1251948 4132663

6 6360928 2317195 916729 3127004

7 5239028 1970872 722834 2545321

8 4331747 1688497 566608 2076642

9 3587220 1454598 438951 1693671

10 2974020 1260418 334196 1379406

11 2459188 1095456 246728 1117003

12 2028670 956373 173870 898427

13 1662539 836547 112293 713698

14 1522269 765967 94871 661431

15 1398096 703486 79448 615162

16 1287720 647948 65739 574033

17 1191141 599352 53743 538046

18 1103760 555384 42890 505486

19 1025577 516044 33179 476354

20 956592 481333 24610 0 450649

Tabla 13. Flujo de caja economico del proyecto con LWD.

VAN $29,339,918.47

TIR 124.808%

Page 87: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

83

como se puede ver los resultados muestran que el uso de la herramienta LWD amplia

la vida util del proyecto de 14 a 20 años debido al aumento de la produccion de

petroleo por un mayor contacto del pozo con el reservorio (mayor area drenada) y

por la reduccion drastica del corte de agua debido a un mejor emplazamiento del

pozo en la zona de interes. Esto conlleva a que la rentabilidad del proyecto supere las

espectativas como lo muestran tanto el VAN como el TIR.

9.2.4. Analisis de los principales factores de rentabilidad del proyecto

Debido a que el analisis economico del proyecto con la herramienta LWD brinda una

rentabilidad mayor basada en los objetivos principales que son el aumento de la

produccion del pozo y la reduccion del corte de agua, es por tal motivo que el estudio

amerita un analisis mas detallado comparando ambos objetivos para definir cual de

ellos es el que en mayor medida aporta a la rentabilidad del proyecto, estos seran

esquematizados en dos simulaciones:

9.2.4.1. Primera Simulacion

En este caso se asume que se logra incrementar la produccion del pozo pero el corte

de agua mantiene la tendencia de la prognosis.

Para los calculos correspondientes a este analisis se mantiene los 20 años de vida del

proyecto, se mantiene la tendencia de la produccion obtenida con el uso de la

herramienta LWD y los datos de corte de agua se reemplazan por los datos obtenidos

de la prognosis.

Page 88: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

84

Año Precio $/bbl Ingreso Depreciacion Costo Total Utilidad sin Impuesto Utilidad

BOPD CA(%) NETO Produccion Produccion Costo de Tangibles Intangibles Total Impuesto 30% Neta

Agua Petroleo Produccion

exploracion

desarrollo

1 3500 0.75 875 70 22356250 1916250 4790625 6706875 376818 108089 484907 7191781.515 15164468.48 3791117 15164468

2 2893 0.82 521 70 13304907 1731749.8 2851051.5 4582801 376818 0 376818 4959619 8345288 2086322 8345288

3 2431 0.85 365 70 9316808 1508436 1996459 3504894 376818 0 376818 3881712 5435096 1358774 5435096

4 2071 0.86 290 70 7407967 1300174 1587422 2887595 376818 0 376818 3264413 4143554 1035889 4143554

5 1786 0.87 232 70 5932199 1134289 1271186 2405474 376818 0 376818 2782292 3149907 787477 3149907

6 1556 0.88 187 70 4770696 999574 1022292 2021866 376818 0 376818 2398684 2372012 593003 2372012

7 1367 0.89 150 70 3841954 888140 823276 1711416 376818 0 376818 2088233 1753720 438430 1753720

8 1211 0.9 121 70 3094105 795627 663023 1458650 376818 0 376818 1835467 1258638 314659 1258638

9 1080 0.91 97 70 2483460 717444 532170 1249614 376818 0 376818 1626432 857028 214257 857028

10 970 0.92 78 70 1982680 651452 424860 1076312 376818 0 376818 1453130 529550 132388 529550

11 875 0.92 70 70 1788500 587650 383250 970900 376818 0 376818 1347718 440782 110196 440782

12 794 0.92 64 70 1622936 533250 347772 881022 376818 0 376818 1257840 365096 91274 365096

13 723 0.92 58 70 1477812 485567 316674 802241 376818 0 376818 1179058 298754 74688 298754

14 662 0.92 53 70 1353128 444599 289956 734555 376818 0 376818 1111373 241755 60439 241755

15 608 0.92 49 70 1242752 408333 266304 674637 376818 0 376818 1051454 191298 47824 191298

16 560 0.92 45 70 1144640 376096 245280 621376 376818 0 376818 998194 146446 36612 146446

17 518 0.92 41 70 1058792 347889 226884 574773 376818 0 376818 951590 107202 26800 107202

18 480 0.92 38 70 981120 322368 210240 532608 376818 0 376818 909426 71694 17924 71694

19 446 0.92 36 70 911624 299534 195348 494882 376818 0 376818 871699 39925 9981 39925

20 416 0.92 33 70 850304 279386 182208 461594 376818 0 376818 838411 11893 2973 11893

Produccion de Petroleo Costo Operativo Depeciacion

Tabla 14. Estado de perdidas y ganancias para la primera simulacion.

INGRESOS (vs) COSTOS

0

10000000

20000000

30000000

40000000

50000000

60000000

0 5 10 15 20 25

AÑOS

$

INGRESOS

COSTOS

Figura 53. Curvas de ingresos y costos de la primera simulacion.

Page 89: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

85

Año Ingresos Costos de Impuesto Inversion Valor Flujo de

Produccion (-30%) Residual Caja

0 -19653117 -19653117

1 22356250 6706875 3791117 11858258

2 13304907 4582801 2086322 6635784

3 9316808 3504894 1358774 4453139

4 7407967 2887595 1035889 3484483

5 5932199 2405474 787477 2739248

6 4770696 2021866 593003 2155827

7 3841954 1711416 438430 1692108

8 3094105 1458650 314659 1320796

9 2483460 1249614 214257 1019589

10 1982680 1076312 132388 773980

11 1788500 970900 110196 707404

12 1622936 881022 91274 650640

13 1477812 802241 74688 600883

14 1353128 734555 60439 558134

15 1242752 674637 47824 520291

16 1144640 621376 36612 486652

17 1058792 574773 26800 457219

18 981120 532608 17924 430588

19 911624 494882 9981 406761

20 850304 461594 2973 0 385737

Tabla 15. Flujo de caja economico para la primera simulacion.

VAN $270,206

TIR 25.719%

9.2.4.2. Segunda Simulacion

En este caso se asume que se logra reducir el corte de agua pero la produccion se

mantiene segun lo estimado en la prognosis.

Para los calculos correspondientes a este analisis se mantiene los 20 años de vida del

proyecto, se mantiene la tendencia de la reduccion del corte de agua debido al uso de

la herramienta LWD, pero la produccion diaria reemplaza por lo datos de la

prognosis proyectada en la declinacion hiperbolica calculada en este estudio.

Page 90: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

86

Año Precio $/bbl Ingreso Depreciacion Costo Total Utilidad sin Impuesto Utilidad

BOPD CA(%) NETO Produccion Produccion Costo de Tangibles Intangibles Total Impuesto 30% Neta

Agua Petroleo Produccion

exploracion

desarrollo

1 2200 0.35 1430 70 36536500 562100 7829250 8391350 376818 108089 484907 8876256.515 27660243 6915061 27660243

2 1818 0.57 782 70 19975455 756545 4280455 5037000 376818 0 376818 5413818 14561637 3640409 14561637

3 1528 0.73 413 70 10539375 814153 2258438 3072590 376818 0 376818 3449408 7089967 1772492 7089967

4 1302 0.8 260 70 6652071 760237 1425444 2185680 376818 0 376818 2562498 4089573 1022393 4089573

5 1122 0.82 202 70 5162143 671898 1106173 1778071 376818 0 376818 2154889 3007254 751813 3007254

6 978 0.84 156 70 3997156 599573 856533 1456107 376818 0 376818 1832924 2164231 541058 2164231

7 859 0.85 129 70 3293555 533242 705762 1239004 376818 0 376818 1615821 1677733 419433 1677733

8 761 0.86 107 70 2722976 477910 583495 1061405 376818 0 376818 1438222 1284753 321188 1284753

9 679 0.87 88 70 2255340 431241 483287 914528 376818 0 376818 1291345 963994 240999 963994

10 609 0.88 73 70 1868476 391490 400388 791878 376818 0 376818 1168696 699781 174945 699781

11 550 0.89 61 70 1545775 357335 331238 688573 376818 0 376818 1065390 480385 120096 480385

12 499 0.9 50 70 1274603 327755 273129 600884 376818 0 376818 977702 296901 74225 296901

13 455 0.91 41 70 1045227 301955 223977 525932 376818 0 376818 902749 142478 35619 142478

14 416 0.91 37 70 956314 276268 204924 481193 376818 0 376818 858010 98303 24576 98303

15 382 0.91 34 70 878281 253726 188203 441929 376818 0 376818 818746 59535 14884 59535

16 352 0.91 32 70 809424 233834 173448 407282 376818 0 376818 784099 25325 6331 25325

17 325 0.91 29 70 748358 216192 160362 376555 376818 0 376818 753372 -5014 -1254 -5014

18 302 0.91 27 70 693951 200475 148704 349178 376818 0 376818 725996 -32045 -8011 -32045

19 281 0.91 25 70 645268 186411 138272 324682 376818 0 376818 701500 -56232 -14058 -56232

20 262 0.91 24 70 601534 173776 128900 302677 376818 0 376818 679494 -77960 -19490 -77960

Produccion de Petroleo Costo Operativo Depeciacion

Tabla 16. Estado de perdidas y ganancias para la segunda simulacion.

INGRESOS (vs) COSTOS

0

10000000

20000000

30000000

40000000

50000000

60000000

0 5 10 15 20 25

AÑOS

$

INGRESOS

COSTOS

Figura 54. Curvas de ingresos y costos de la segunda simulacion.

Page 91: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

87

Año Ingresos Costos de Impuesto Inversion Valor Flujo de

Produccion (-30%) Residual Caja

0 -19653117 -19653117

1 36536500 8391350 6915061 21230089

2 19975455 5037000 3640409 11298045

3 10539375 3072590 1772492 5694293

4 6652071 2185680 1022393 3443997

5 5162143 1778071 751813 2632258

6 3997156 1456107 541058 1999991

7 3293555 1239004 419433 1635117

8 2722976 1061405 321188 1340383

9 2255340 914528 240999 1099813

10 1868476 791878 174945 901653

11 1545775 688573 120096 737106

12 1274603 600884 74225 599493

13 1045227 525932 35619 483676

14 956314 481193 24576 450545

15 878281 441929 14884 421469

16 809424 407282 6331 395811

17 748358 376555 -1254 373057

18 693951 349178 -8011 352784

19 645268 324682 -14058 334643

20 601534 302677 -19490 0 318347

Tabla 17. Flujo de caja economico para la segunda simulacion.

VAN $11,287,021

TIR 62.299%

Realizando el analisis comparativo de estos dos casos podemos determinar que la

reduccion del corte de agua debido a un mejor emplazamiento del pozo con el uso de

la herramienta LWD es el objetivo de mayor trascendencia economica pues segun

los resualtados del VAN y el TIR, la rentabilidad del proyecto para el segundo caso

es mayor en comparacion con la rentabilidad del proyecto para el primer caso en el

cual se concidera el aumento de la produccion pero con altas tasas de corte de agua.

Esto es razonable pues en el caso de la selva el costo de produccion, separacion,

tratamiento y reinyeccion del agua tiene un valor negativamente significativo para la

rentabilidad del proyecto.

Page 92: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

88

10. CONCLUCIONES Y RECOMENDACIONES

1.- Si bien los registros de imagenes proporcionados por las herramientas LWD se

transmiten con la resolucion suficiente para realizar su analisis e interpretacion, estos aun

son de menor resolucion que las imagenes generadas por la herramineta FMI la cual es

corrida a cable, esto debido a los diversos factores propios de la perforacion que alteran la

toma del registro continuo cuando la herramienta LWD esta en el pozo.

2.- Las mediciones de la nueva generación de las herramientas LWD esta transformando la

adquisición de registros durante la perforación en adquisición de registros para la

perforación, ya que la integración de las imágenes del pozo con las otras mediciones

obtenidas en tiempo real, proporcionan un medio eficaz para mejorar la eficiencia de la

perforación.

3.- El reconocimiento de los eventos inducidos en la perforación mediante la

interpretación de las imágenes de las paredes del pozo permite correcciones en el proceso

de perforación, y esto reduce los costos debido a la optimizacion y una mayor eficiencia

de la perforación.

4.- En esta tesis se ha mostrado la forma en que los registros de imagenes en tiempo real

pueden optimizar en gran medida el emplazamiento del pozo, debido a que la

interpretacion de la información geológica y de buzamientos estructurales derivados de las

imágenes del agujero reducen significativamente la incertidumbre en la geonavegación, y

por lo tanto mejoran la tasa de éxito de los pozos direccionales, de alcance extendido y

horizontales.

5.- Sustentandose en la evaluacion economica realizada en esta tesis se puede concluir que

el uso de las herramientas LWD disminuyen los costos, al ahorrar tiempo de perforación y

mejorar la eficiencia de la perforación. Asimismo, incrementan los volumenes de

recuperacion de hidrocarburos al maximizar la extensión de la zona productiva y reducir el

efecto de los principales factores que restringen el flujo de petróleo.

6.- Debido a que aun no existe suministro de energia que tenga la rentabilidad comercial y

y que sea capas de abastecer el consumo global como actualmente lo es la industria de

hidrocarburos. Se recomienda el uso de las herramientas LWD en la perforacion de pozos

Page 93: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

89

direccionales y horizontales con la finalidad de hacer eficiente la perforacion y permitir

una mayor extraccion de los hidrocarburos del subsuelo.

7.- Se recomienda el uso de las herramientas LWD en pozos multidireccionales y con alto

grado de dificultad, asi como en yacimientos ubicados en aguas profundas, y campos

maduros con el proposito de alcanzar los objetivos de perforacion y produccion deseados.

Page 94: “UNIVERSIDAD NACIONAL DE INGENIERÍA” “OPTIMIZACIÓN DEL ...

90

11. BIBLIOGRAFIA

Introduction to Directional and Horizontal Drilling J.A. “Jim” Short,1993.

Oil Well Drilling Technology McGray and Cole.

Oilfield Review; “LWD en tiempo real: Registros para la perforacion”.

Oilfield Review ; “Auge de las imagenes de las paredes del pozo”.

Perforacion de Exploracion; B.I. Vozaviz Henski, Editorial-MIR-Moscu

Petroleum Related Rock Mechanics; 1992.

Paper de la SPE 107661, Optimum Horizontal Well Placement in Very LowResistivity Reservoir with a Directional and Deep Logging-While-DrillingTechnology.

Prilliman JD, Allen DF y Lehtonen LR: “Horizontal Well Placement andPetrophysical Evaluation Using LWD” articulo de la SPE 30546, presentado en laconferencia tecnica y Exibicion anual de la SPE, Dallas, Texas, EUA, Octubre 22-25, 1995.

Rasmus J, Bornemann T, Farruggio G y Low S: “Optimizing Horizontal Lateralsin a Heavy Oil Reservoir Using LWD Azimuthal Measurements,” Articulo de laSPE 56697 presentado en la conferencia tecnica y Exibicion anual de la SPE,Houston, Texas, EUA, Octubre 3-6, 1999.

http://www.perupetro.com.pe/estadisticas01

www.atlahua.com/temporal/curvas-de-declinacion.pdf

www.google.com.pe/Peru Corporation en cuanto a la produccion acumulada-fuente

perupetro.

yacimientos-de-gas-condesado.blog spot.com/2008/02/curvas de declinacion.html