TRATAMIENTO DE AGUAS -...

39
TRATAMIENTO DE AGUAS 1 TRATAMIENTO DE AGUAS TRATAMIENTO DE AGUAS CAPITULO IV: CAPITULO IV: TRATAMIENTO PRELIMINAR TRATAMIENTO PRELIMINAR UNIVERSIDAD ALAS PERUANAS FACULTAD DE INGENIERIA AMBIENTAL Profesor: Ing. Omar Eduardo Olivos Lara Lima Lima – Per Perú 2010 2010 2 SESIÓN 4.1: OBJETIVOS DEL TRATAMIENTO PRELIMINAR Ing. Omar E. Olivos Lara CAPITULO IV: CAPITULO IV: TRATAMIENTO PRELIMINAR TRATAMIENTO PRELIMINAR UNIVERSIDAD ALAS PERUANAS FACULTAD DE INGENIERIA AMBIENTAL

Transcript of TRATAMIENTO DE AGUAS -...

Page 1: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

1

TRATAMIENTO DE AGUASTRATAMIENTO DE AGUAS

CAPITULO IV:CAPITULO IV:

TRATAMIENTO PRELIMINARTRATAMIENTO PRELIMINAR

UNIVERSIDAD ALAS PERUANAS

FACULTAD DE INGENIERIA AMBIENTAL

Profesor:Ing. Omar Eduardo Olivos Lara

Lima Lima –– PerPerúú20102010

2

SESIÓN 4.1:

OBJETIVOS DEL TRATAMIENTO PRELIMINAR

Ing. Omar E. Olivos Lara

CAPITULO IV:CAPITULO IV:TRATAMIENTO PRELIMINARTRATAMIENTO PRELIMINAR

UNIVERSIDAD ALAS PERUANAS

FACULTAD DE INGENIERIA AMBIENTAL

Page 2: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

3

4.1 Objetivos del Tratamiento Preliminar.Tiene como objetivo la retención de sólidos gruesos y sólidos finos con densidad mayor al agua y arenas, con el fin de facilitar el tratamiento posterior. Son usuales el empleo de canales con rejas gruesas y finas, desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones obviadas en el diseño de plantas de tratamiento, son necesarias para evitar problemas por el paso de arena, basura, plásticos, etc., hacia los procesos de tratamiento propiamente dichos.

4

4.1 Objetivos del Tratamiento Preliminar.

• Las aguas superficiales normalmente presentan sólidos gruesos y partículas abrasivas que hacen necesaria la utilización de unidades de tratamiento preliminar como dispositivos de retención, remoción y/o trituración. Muchos proyectos ignoran estas unidades.

• El tratamiento preliminar se compone de la cámara de rejas y del canal desarenador.

Page 3: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

5

SESIÓN 4.2:

CANAL DE REJAS

Ing. Omar E. Olivos Lara

CAPITULO IV:CAPITULO IV:TRATAMIENTO PRELIMINARTRATAMIENTO PRELIMINAR

UNIVERSIDAD ALAS PERUANAS

FACULTAD DE INGENIERIA AMBIENTAL

6

4.2 Canal de Rejas

Son dispositivos constituidos por barras metálicas paralelas e igualmente espaciadas. Las barras pueden ser rectas o curvadas. Su finalidad es retener sólidos gruesos, de dimensiones relativamente grandes, que estén en suspensión o flotantes. Las rejas, por lo general, son la primera unidad de una planta de tratamiento.

Finalidad del Canal de Rejas

� Protección de los dispositivos de transporte de las aguas contra obstrucción en las válvulas, bombas, equipos de aeración, tuberías y otras partes de la planta .

� Protección de los Equipos de tratamiento.

Page 4: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

7

4.2 Canal de Rejas

S

VISTA EN PLANTA DE UNA CÁMARA DE REJAS

ENTRADA

Scb

L

B

B: Ancho del Canal de RejasL: Ancho del Canal By-PassS: Pendiente del Canal de RejasScb: Pendiente del Canal By-Pass

8

CORTE LONGITUDINAL DE UNA CÁMARA DE REJAS

Ain

S

Tp

Tmax

Hto

t

htc

b

hutH

L

Tmax: Tirante de agua máximo aguas arribaTp: Tirante de agua promedio aguas arribaAin: Angulo de inclinación de las barrasS: Pendiente del canal de rejasH: Borde libre del canal de rejasHtot: Altura total del canal de rejasL: Ancho del canal By-Passhut: Altura útil del canal by-passhtcb: Altura total del canal by-pass

Page 5: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

9

REJAS

B

a

B: Ancho real del canal de Rejasa: Espaciamiento entre barras

10

4.2.1 Tipos de Rejas

1. Rejas Gruesas: se instalan aguas arriba de las bombas de grandes dimensiones, turbinas, etc.

2. Rejas Medianas: con menor espacio entre las barras (por lo gral. de 25mm)

3. Rejas Finas: se emplean cuando están bien determinadas las características de las aguas.

10 – 20Fina

20 – 40Media

40 – 100Gruesa

Espaciamiento (mm)

Tipo

Dimensionamiento de las Barras

Page 6: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

11

4.2.1 Tipos de Rejas

10 x 40Fina

8 x 40Fina

6 x 40Fina

10 x 50Media

10 x 40Media

8 x 50Media

13 x 50Gruesa

13 x 40Gruesa

10 x 60Gruesa

10 x 50Gruesa

Sección (mm x mm)Tipo de Rejilla

Sección transversal rectangular de las barras

12

4.2.1 Tipos de Rejas

1. Simples, de limpieza manual; en gral. Son gruesas y presentan espacios relativamente grandes.

2. Mecanizadas, de limpieza mecánica, automática o no. Exigen un mantenimiento cuidadoso.

1. Limpieza manual: 45° - 60 ° con la horizontal.

2. Limpieza mecánica: 60 ° a 90 °con la horizontal (más usual de 75 °a 85 °).

Inclinación de las barras

Page 7: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

13

4.2.2 Criterios de Dimensionamiento de Rejas

Según Norma S.090 Plantas de Tratamiento de Aguas R esiduales

1. Las rejas deben utilizarse en toda planta de tratamiento, aun en las más simples.

2. Se diseñarán preferentemente rejas de limpieza manual, salvo que la cantidad de material cribado justifique las de limpieza mecanizada.

3. El diseño de las rejas debe incluir:� una plataforma de operación y drenaje del material cribado con

barandas de seguridad;

� iluminación para la operación durante la noche;

� espacio suficiente para el almacenamiento temporal del material cribado en condiciones sanitarias adecuadas;

� solución técnica para la disposición final del material cribado; y

� las compuertas necesarias para poner fuera de funcionamiento cualquiera de las unidades.

14

Según Norma S.090 Plantas de Tratamiento de Aguas R esiduales

4. El diseño de los canales se efectuará para las condiciones de caudal máximo horario, pudiendo considerarse las siguientes alternativas:

�tres canales con cribas de igual dimensión, de los cuales uno servirá de bypassen caso de emergencia o mantenimiento. En este caso dos de los tres

canales tendrán la capacidad para conducir el máximo horario;

�dos canales con cribas, cada uno dimensionados para el caudal máximo horario;

�para instalaciones pequeñas puede utilizarse un canal con cribas con by pass para el caso de emergencia o mantenimiento

4.2.2 Criterios de Dimensionamiento de Rejas

Page 8: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

15

4.2.2 Criterios de Dimensionamiento de Rejas

Según Norma S.090 Plantas de Tratamiento de Aguas R esiduales

5. Para el diseño de cribas de rejas se tomarán en cuenta los siguientes aspectos:

a. Se utilizarán barras de sección rectangular de 5 a 15 mm de espesor de 30 a 75 mm de ancho. Las dimensiones dependen de la longitud de las barras y el mecanismo de limpieza.

b. El espaciamiento entre barras estará entre 20 y 50 mm. Para localidades con un sistema inadecuado de recolección de residuos sólidos se recomienda un espaciamiento

c. Las dimensiones y espaciamiento entre barras se escogerán de modo que la velocidad del canal antes de y a través de las barras sea adecuada. La velocidad a través de las barras limpias debe mantenerse entre 0,60 a 0,75 m/s (basado en caudal máximo horario). Las velocidades deben verificarse para los caudales mínimos, medio y máximo.

d. Determinada las dimensiones se procederá a calcular la velocidad del canal antes de las barras, la misma que debe mantenerse entre 0,30 y 0,60 m/s, siendo 0.45 m/s un valor comúnmente utilizado.

16

4.2.2 Criterios de Dimensionamiento de Rejas

Según Norma S.090 Plantas de Tratamiento de Aguas R esiduales

5. Para el diseño de cribas de rejas se tomarán en cuenta los siguientes aspectos:

e. En la determinación del perfil hidráulico se calculará la pérdida de carga a través de las cribas para condiciones de caudal máximo horario y 50% del área obstruida. Se utilizará el valor más desfavorable obtenido al aplicar las correlaciones para el cálculo de pérdida de carga. El tirante de agua en el canal antes de las cribas y el borde libre se comprobará para condiciones de caudal máximo horario y 50% del área de cribas obstruida.

f. El ángulo de inclinación de las barras de las cribas de limpieza manual seráentre 45 y 60 grados con respecto a la horizontal.

g. El cálculo de la cantidad de material cribado se determinará de acuerdo con la siguiente tabla.

Page 9: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

17

4.2.3 Dimensionamiento de Rejas

Según Norma S.090 Plantas de Tratamiento de Aguas R esiduales

� Velocidad a través de las rejas:� Mínima = 0.60 m/s� Máximo = 1.00 m/s hasta 1.40 m/s para el caudal

máximo� Velocidad antes de las rejas: 0.3 – 0.6 m/s (siendo 0.45 m/s

un valor común)� Estos valores deben verificarse para los caudales mínimo,

medio y máximo.

18

4.2.3 Dimensionamiento de Rejas

� Fijada la velocidad del agua a través de barras, se puede calcular el área útil (o área libre), Au:

V

QAu =

� Conociéndose la abertura entre las barras (a), así como el espesor de las mismas (t), se puede calcular el área total o sección de flujo aguas arriba de la reja (S):

ta

aAu

a

taAuS

+

=+= .

Page 10: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

19

4.2.3 Dimensionamiento de Rejas

� El denominador de la ecuación anterior es denominado por "eficiencia" de la reja y representa más que la relación entre el área libre y el área total del canal.

� La "eficiencia" E varía entre 0.60 a 0.85, siendo más comunes valores alrededor de 0.75.

Eta

a =+

0.7550.7150.6670.60013 mm

0.7740.7410.6960.63211 mm

0.8000.7700.7280.67710 mm

0.8260.8030.7680.7068 mm

0.8570.8340.8000.7506 mm

a=40 mma=30 mma=25 mma=20 mmt

Eficiencia: valores de EEspesor

Eficiencia de las rejas en función del espesor de l as barras

20

4.2.4 Pérdidas de carga de Rejas

� Corresponde a la resistencia ofrecida al pasar el agua a través del canal de rejas y se presentan algunas fórmulas.

� "Metcalf & Eddy"

g

vVhf 2

43.122 −=

hf: pérdida de carga, en metrosg: aceleración gravitacional, g = 9,8 m/s2V: es la velocidad a través de las barras V=v*Ev: es la velocidad aguas arriba de las rejas:

Page 11: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

21

4.2.4 Pérdidas de carga de Rejas

� “Kirschmer, Jaeger" :

g

vbsen

a

tKhf 2

)(.).(2

3

4

=

hf: pérdida de carga, en metrosg: aceleración gravitacional, g = 9,8 m/s2v: es la velocidad aguas arriba de las rejas: v = V * Eb: ángulo que la rejilla hace con la horizontala: espaciamiento entre barrast: espesor de las barrasK: factor que de pende de la sección transversal de las barras

22

4.2.4 Valores de K, fórmula de Kirschmer

� La pérdida de carga debe ser calculada para el caso en que la reja quede 50% "sucia", es decir, para un valor V' igual a dos veces V.

� El área útil para la determinación de la velocidad del flujo a 'través de las barras” es considerada en proyección vertical.

1.79Circular

2.42Rectangular

KSección

Page 12: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

23

4.2.5 Detalles del canal de rejas

� Las instalaciones mecanizadas deben ser diseñadas con dos o más unidades, o por lo menos con un "by-pass" dotado de una reja gruesa simple.

� El ancho del canal de las rejas se acostumbra a construirlo más grande que el diámetro o el ancho del canal de ingreso de agua y debe igualar el ancho de las propias rejas, evitándose espacios muertos. El ángulo recomendado para la transición entre el canal de ingreso y el canal de rejas es de 12°30´ y la longitud puede calcularse con la siguiente expresión:

´)3012tg(212

°−

=BB

L

24

4.2.5 Detalles del canal de rejas

� Las instalaciones mecanizadas deben ser diseñadas con dos o más unidades, o por lo menos con un "by-pass" dotado de una reja gruesa simple.

� El ancho del canal de las rejas se acostumbra a construirlo más grande que el diámetro o el ancho del canal de ingreso de agua y debe igualar el ancho de las propias rejas, evitándose espacios muertos. El ángulo recomendado para la transición entre el canal de ingreso y el canal de rejas es de 12°30´ y la longitud puede calcularse con la siguiente expresión:

´)3012tg(212

°−

=BB

L

Donde:

L: Longitud de transición ingreso – canal, en metros

B2: Ancho del canal de rejas, en metros

B1: Ancho o diámetro del canal de ingreso, en metros

Page 13: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

25

4.2.5 Detalles del canal de rejas

� La perdida de carga producida por esta transición, se calcula con la siguiente relación:

g

vvh ft 2

)(1,0

221 −=

Donde,

hft: Pérdida de carga en la transición, en metros

v1: Velocidad en el canal de ingreso, en m/s

v2: Velocidad en el canal de rejas, en m/s

� El canal de acceso debe ser suficientemente largo para que se evite la turbulencia junto a las barras.

� El fondo del canal es generalmente de 10 a 15 centímetros más bajo que la solera del canal de ingreso. Este desnivel puede ser calculado mediante la siguiente expresión:

ftft hyg

vy

gv

hEEZ −+−+=−−=∆ )2

()2

( 2

22

1

21

21

Donde:

∆Z: Desnivel entre la solera del canal de ingreso y el fondo del canal, en metrosE1: Energía en el canal de ingreso, en metros

E2: Energía en el canal de rejas, en metros

y1: Tirante de agua en el canal de ingreso para el caudal máximo, en metros

y2: Tirante de agua en el canal de rejas para el caudal máximo, en metros

26

4.2.5 Detalles del canal de rejas

� Este “by pass” consta de un rebose lateral en uno de los muros del canal principal, que puede ser calculado como un vertedero rectangular, cuyo dimensionamiento se puede realizar con la fórmula de Francis:

Donde,

Q: Caudal máximo, en m3/s

L: Longitud del vertedero, en metros

H: Altura de la lámina de agua sobre la cresta del vertedero, en metros

( )23.838.1 HLQ =

� El canal de “by pass” al cual rebosan las aguas residuales por el vertedero lateral debe ser dimensionado a una cota inferior de la cresta del vertedero pero superior a la cota de fondo del canal principal, para permitir la descarga en éste último, en lo posible a una nivel superior al de la lámina de agua que ocurriría en canal principal en un flujo máximo.

Page 14: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

27

4.2.6 Material retenido en rejas

� La cantidad de material que queda en las rejas es influenciada por condiciones locales, costumbres de la población, época del año, etc. y depende mucho de la abertura especificada.

� En los Estados Unidos la cantidad de material retenido en rejas con aberturas de la orden de 25 mm generalmente está comprendida entre 0.015 y 0.030 litros por m3 de agua residual. En la ciudad de Sao Paulo han sido encontrados entre 0.010 y 0.025 l/m3.

� Los valores recomendados por la Norma S090 son:

0.00940

0.01235

0.02325

0.03820

Cantidad, l/m3Abertura, mm

� Este material es constituido principalmente por papel, trapos, detritos de cocina, etc.; contiene entre 70 y 90% de agua y pesa de 0.7 a 1.8 kg/litro.

28

4.2.6 Remoción y disposición final del material retenido

� En las pequeñas instalaciones de limpieza es ejecutada por rastrillos manuales y el material extraído debe ser enterrado en un micro-relleno ubicado en las cercanías de las rejas, este enterramiento se realiza una vez al día.

� Para evitar el problema de malos olores y presencia de moscas, al material extraído en cada limpieza se le debe aplicar cal.

Page 15: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

29

4.2.7 Dibujo de Canal de Rejas

� En las pequeñas instalaciones de limpieza es ejecutada por rastrillos manuales y el material extraído debe ser enterrado en un micro-relleno ubicado en las cercanías de las rejas, este enterramiento se realiza una vez al día.

� Para evitar el problema de malos olores y presencia de moscas, al material extraído en cada limpieza se le debe aplicar cal.

30

Ejemplo diseño de rejas

Una comunidad desea implementar la construcción de una nueva planta de tratamiento de aguas residuales. La población futura al año 20 (población de diseño) se estima en 55,000 habitantes. De acuerdo con los hábitos de consumo de agua potable de la localidad se establece una dotación de 200 l/hab/día. Tendiendo en consideración que el % de contribución al alcantarillado es del orden del 85% y que los factores de variación de consumo máximo y mínimo son: 1.8 y 0.7, respectivamente. Se pide dimensionar la unidad de pre tratamiento del canal de rejas.

slónContribuciDotPob

p /22.10885.086400

20055000%

86400Q =××=××=

Solución

1) Cálculo de caudales

slQKQ

slQKQ

p

p

/80.7522.1087.0

/80.19422.1088.1

minmin

maxmax

=×=×=

=×=×=

Page 16: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

31

Ejemplo diseño de rejas

23

26.0/75.0

/1948.0

maxmax

msm

sm

V

QAu ===

8.0"4/1"1

"1 =+

=+

=ea

aE

"4/16

"125

====

mme

mma2) Cálculo de relación de vacíos

ea

3) Cálculo del área útil y total

V (0.60-0.75 m/s) 22

325.08.0

26.0m

m

E

AuAcr ===

B= 1.00 m y= 0.325 m Si :

32

Ejemplo diseño de rejas

myB

yB

P

AR 197.0

325.021

325.01

2=

×+×=

+×==

2

3/2

2/13/2

×

×=⇒××=

RAnQ

Sn

SRAQ

4) Cálculo de la pendiente aguas arriba

5) Velocidad de paso antes de la reja

smm

sm

A

QV

cr

/6.0325.0

/1948.0max2

3

=== V= 0.6 m/s

oxS %5.0103.5197.0325.0

013.01948.0 42

3/2==

×

×= −

n= 0.013(concreto)

Page 17: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

33

Ejemplo diseño de rejas

2/13/2

S

nQAR

×=

044.01)0005.0(

013.01948.03/82/13/82/13/8

3/2

×=××=

bS

nQ

b

AR

6) Cálculo de la velocidad y tirante para caudal mínimo

Del gráfico: mby

18.0=

y mín. = 0.18 m

3/8

3/2

3/8

3/2

d

ARó

b

AR

Z=0

Z=1

b

y

Z

1

y/b circular

Ok!smsmVmín /30.0/42.0118.0

0758.0⟩=

×=

V mín. = 0.42 m/s

34

Ejemplo diseño de rejas

7.01

2' 22

×−=gVV

hf

smxV /50.1275.0%50

175.0´ =×==EVV

VV

×=

×=

max

) %pérdida-(11

max'

7) Cálculo de pérdida de carga

Donde,V: Velocidad en el canal (antes de la reja)V’: Velocidad de paso a través de rejasg: aceleración de la gravedad (9.8 m/s2)

Se asume 50% de obstrucción:

mhf 14.07.0

18.9260.050.1 22

=××−=

Metcalf

Kirshmer

gV

senae

hf2

234

⋅⋅

= θβo

mme

mma

60

"4/16

"125

)rrectangula( 42.2

===

===

θ

β

( ) msenhf o 056.08.92

6.060

14/1

42.223

4

=⋅⋅

= mhf 15.0=Por procedimiento constructivo

Page 18: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

35

Ejemplo diseño de rejas

( ) 2/32.0838.11948.0 HHB ⋅−⋅=

9) Diseño de canal by-pass2/3HBKQ ⋅⋅=

B = 1.00 m H = 0.231 m

Resolviendo ecuación:

B = 0.90 m H = 0.249 m

0.20

B=1.00 m

L=0.23 m

A = 1 x 0.23 = 0.23m2

8) Número de barras

1++

=ea

Ln 1+

+=

ea

Bn barrasn 321

0254.0)4/11(00.1 =+×+

=

36

Ejemplo diseño de rejas

10) Cálculo de la pendiente del canal by-pass

myB

yB

P

AR 158.0

231.0200.1231.000.1

2=

×+×=

+×==

2

3/2

2/13/2

×

×=⇒××=

RAnQ

Sn

SRAQ

oxS %4.1104.1158.0231.0

013.01948.0 32

3/2==

×

×= −

n= 0.013(concreto)

Page 19: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

37

11) Diseño del emisor

V (0.60-0.75 m/s)

B=1.00 mD

nSRA

Q2/13/2 ××=

o%5.0

3016.0

Q para 4/3/ max

==

=

S

DR

Dy

( ) ( )013.0

0005.03016.04

1948.0

2/13/22 ××

×=

DDπ

mD 80.0=

mtg

DBL

o45.0

2217.0280.000.1

'30122=

×−=

×−=

L=0.45 m

12°30’

mL 45.0=

22 5027.080.04 mA =×= π smAQV /388.05027.0/1948.0/1 ===

Ejemplo diseño de rejas

38

12) Cálculo de ∆∆Z

V (0.60-0.75 m/s)

B=1.00 mD

mxg

VVhft 002.0

8.92)75.0388.0(

1.02

)(1.0

2222

21 =−=−=

fthyg

Vy

gV

Z −

+−

+=∆ 2

22

1

21

22

mD 80.0=

002.0325.08.92

75.041.0

8.9260.0 22

+

×−

+

×=∆ Z

L=0.45 m

12°30’

mZ 10.0=∆

Page 20: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

39

SESIÓN 4.3:

DESARENADOR

Ing. Omar E. Olivos Lara

CAPITULO IV:CAPITULO IV:TRATAMIENTO PRELIMINARTRATAMIENTO PRELIMINAR

UNIVERSIDAD ALAS PERUANAS

FACULTAD DE INGENIERIA AMBIENTAL

40

4.3 Desarenador

Los desarenadores son unidades destinadas a retener la arena y otros residuos minerales inertes y pesados que se encuentran en las aguas.

Son tanques de sedimentación diseñados para remover materia no putrescible que puede causar abrasión en canales o bombas, y ocasionar su obstrucción.

La materia removida, como no es biodegradable, debe recolectarse y disponerse en un área adecuada para relleno.

Page 21: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

41

42

4.2.1 Principios de funcionamiento

� Corrientes líquidas en régimen crítico de turbulencia arrastran partículas sólidas suspendidas y más densas q el agua.

� Una partícula suspendida se considera removida si su velocidad de sedimentación es suficiente para alcanzar el fondo del desarenador y si la velocidad horizontal del líquido es insuficiente para remover la partícula sedimentada por arrastre

� Granos de Arena de peso específico igual a 2,65 g/ml a 20 °C en aguas mansas.

0.90.90.1

2.41.70.2

4.32.60.3

5.04.30.5

10.08.51.0

Valores prácticos (cm/s)

Fórmula de Allen (cm/s)

Tamaño de las partículas (mm)

Page 22: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

43

4.2.3 Descripción

Esta unidad se puede dividir en cuatro zonas.

� Zona de entrada . Consistente en una transición que une el canal o tubería de llegada de la captación con la zona de sedimentación o desarenación. Tiene como función el conseguir una distribución más uniforme de las líneas de flujo dentro de la unidad, uniformizando a su vez la velocidad. Se consideran dos compuertas en la entrada para orientar el flujo hacia la unidad o hacia el canal by pass durante la operación de limpieza.

� Zona de desarenación . Consistente en un canal en el cual se realiza el proceso de depósito de partículas con pendiente en el fondo para facilitar la limpieza.

� Zona de salida . Conformada por un vertedero de rebose diseñado para mantener una velocidad que no altere el reposo de la arena sedimentada.

� Zona de depósito y eliminación de la arena sediment ada. Conformada por una tolva con pendiente de 10% para impulsar el deslizamiento de la arena hacia el canal.

44

4.2.4 Velocidad en los Desarenadores

� En los canales de remoción de arena la velocidad recomendable es del orden de 0.30 m/s.

� Velocidades inferiores a 0.15 m/s causan la deposición simultánea de cantidades relativamente grandes de materia orgánica, y velocidades mayores a 0.40 m/s causan el arrastre del material sedimentado.

� La Norma S.090 señala que se debe controlar la velocidad horizontal alrededor de 0,3 m/s con una tolerancia de ± 20%

Page 23: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

45

46

4.2.5 Número de Unidades y By-pass

� De acuerdo con la reglamentación nacional se dimensionan por lo menos dos desarenadores en paralelo, para retirar una de las unidades en el momento de limpieza de las arenas removidas. Los desarenadores son obligatorios en las plantas que tienen sedimentadores y digestores (Tanques Imhoff, RAFA, filtros biológicos, etc.).

� En poblaciones pequeñas, generalmente son previstos dos desarenadores en paralelo, cada uno de ellos calculado para el caudal máximo horario. Una se mantiene en operación y la otra en “stand by”de modo que el retiro de una unidad de operación, para limpieza o reparación, se pone en operación la otra unidad.

Page 24: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

47

B

B

LLadic Ladic

Ltot

B

b(to

lva)

48

COMPUERTA

Hmax

DEPÓSITO DE ARENA

VERTEDERO

SALIDA

SECCIÓN A-A

Hprom Hmin

h'h

Hto

t

Ltot

Hmax: Altura de agua con el caudal máximoHprom: Altura de agua con el caudal promedioHmin: Altura de agua con el caudal mínimoHtot: Altura total del desarenadorh: Borde libre del desarenadorh': Altura de la zona de depòsito de arenaLtot: Longitud total del desarenador

Page 25: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

49

TM

T

(X/2,Y)

b

aY

H

X

Y

X/2

H = Tirante de agua en el canal desarenadora = Altura mínima del vertedero Sutrob = Ancho del vertedero SutroX = Ancho variable del vertederoY = Altura de agua a partir de la altura mínimaT = Tirante mínimo de aguaTM = Tirante máximo de agua

VERTEDERO SUTRO DEL CANAL DESARENADOR

50

4.2.6 Área de los Desarenadores

� Los desarenadores pueden ser dimensionados por la teoría de sedimentación de Hazen. Como la experiencia indica que las partículas de arena nocivas son las de tamaño igual o superior a 0.2 mm, cuyo peso específico es de 2.65 g/cm3 y velocidad de sedimentación del orden de 2.0 cm/s, se constata que los desarenadores deben ser diseñados con tasas de aplicación de 600 a 1,200 m3/(m2.día).

� La norma nacional señala valores entre 45 a 70 m3/(m2.hora), que corresponden a tasas de aplicación de 1080 a 1680 m3/(m2.día).

� Estos valores permiten determinar el área necesaria para los desarenadores

Page 26: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

51

4.2.7 Profundidad de la Lámina líquida

� En los desarenadores de tipo "canal" la profundidad del agua para el caudal mínimo, medio y máximo es determinada partiéndose de las condiciones de funcionamiento del controlador de velocidad (vertedero de salida). Cada vertedero tiene su ecuación que relaciona la altura del agua con el caudal.

52

4.2.8 Largo de los Desarenadores

� Partiéndose de los valores anteriores (tasas de aplicación superficial) se puede calcular el largo necesario para los canales de retención de arena:

L

HV

BL

BHV

A

BHV

A

SV

A

Q HHH ====

AQHV

L H=

Donde:Q = Caudal máximo horario, en m3/hA = Area superficial, en m2S = Sección transversal máxima del flujo, en m2H = Altura máxima de la lámina de agua, en metrosB = Ancho medio de la sección del flujo, en metrosA = Area superficial, en m2L = Largo que se pretende calcular, en metrosQ/A = Tasa de aplicación superficial, en m3/(m2.hora)V = Velocidad horizontal óptima (0.30 m/s)

� Aplicándose la última expresión para una tasa de aplicación superficial de 50 m3/(m2.hora) se obtiene la relación:

Hhmm

6,21//50 23 =××= 3600 0.30m/s H

L H25=L (Norma S.090)

Page 27: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

53

4.2.9 Ancho de los Desarenadores

� Una vez conocida la profundidad, se determina el ancho de los canales de manera que sea mantenga la velocidad óptima de 0.30 m/s.

� Sí la sección de flujo fuera rectangular,

HH VHBVSQ ... ==HH.V

QB =

54

4.3.11 Recomendaciones de Diseño

1. El periodo de diseño, teniendo en cuenta criterios económicos y técnicos es de 8 a 16 años.

2. El número de unidades mínimas en paralelo es 2 para efectos de mantenimiento. En caso de caudales pequeños y turbiedades bajas se podrácontar con una sola unidad que debe contar con un canal de by-pass para efectos de mantenimiento.

Page 28: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

55

4.3.11 Criterios de Diseño

4. El periodo de operación es de 24 horas por día.

5. Debe existir una transición en la unión del canal o tubería de llegada al desarenador para asegurar la uniformidad de la velocidad en la zona de entrada.

6. La transición debe tener un ángulo de divergencia suave no mayor de 12°30´.

7. La velocidad de paso por el vertedero de salida debe ser pequeña para causar menor turbulencia y arrastre de material (Krochin,V=1m/s).

8. La llegada del flujo de agua a la zona de transición no debe proyectarse en curva pues produce velocidades altas en los lados de la cámara.

56

4.3.11 Creitrios de Diseño

9. Cuando las partículas de arena a sedimentar se encuentran en tamaños comprendidos entre 0.01 y 0.1 cm, se utilizará la fórmula de Allen para el cálculo de la velocidad de sedimentación.

10. Cuando el tamaño de las partículas de arena es superior a 1.0 cm se utilizará para el cálculo de la velocidad de sedimentación (Vs) la fórmula de Newton.

11. Solo cuando se tengan partículas de arena muy fina de tamaño menor a 0.01 cm se utilizará para el cálculo de Vs la fórmula de Stokes

( )

⋅−= 3/1

3/2

22.0ρµρ

ρρ dgV s

s

ρρρ −⋅⋅= s

s gdV 82.1

2

181

dgV ss ⋅−⋅=

µρρ

Donde:d = diámetro de la arena (cm)µ = viscosidad del aguaρs = densidad de la arenaρ = densidad del aguaB = aceleración de la gravedad

⋅⋅=µ

2

90d

gVs

Para ρs = 2.65 y g=981cm/s2

Page 29: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

57

Relación entre diámetro de partículas y velocidad d e sedimentación

58

4.3.11 Criterios de Diseño

12. La sedimentación de arena fina (d<0.01 cm) se efectúa en forma más eficiente en régimen laminar con valores de número de Reynolds menores de uno (Re<1.0).

13. La sedimentación de arena gruesa se efectúa en régimen de transición con valores de Reynolds entre 1.0 y 1 000.

14. La sedimentación de grava se efectúa en régimen turbulento con valores de número de Reynolds mayores de 10 000.

15. La relación largo/profundidad debe ser entre 10 y 20

16. Para compensar las turbulencias se recomienda calcular la longitud de la zona de sedimentación mediante la siguiente expresión:

17. El valor de la velocidad horizontal (Vh) debe ser siempre menor que el de la velocidad de arrastre (Va) correspondiente al determinado diámetro de arena que deseamos sedimentar

s

h

V

VHL ⋅⋅= 25.1

2010 <<H

L

ah VV ×= 5.0

( ) dsVa ⋅−= ρρ125 dVa 161=

Para ρs = 2.65 y g=981cm/s 2

Page 30: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

59

4.3.11 Criterios de Diseño

18. Se aconsejan los siguiente valores de Vh por debajo de los cuales se minimiza la influencia de la velocidad de arrastre:

19. La longitud de transición de entrada se calcula mediante la siguiente expresión:

20. La velocidad de paso por el vertedero de salida debe ser pequeña para causar menor turbulencia y arrastre de material. Krochin indica que se puede admitir como máximo una velocidad igual V=1m/s.

21. Para desarenador de una unidad, considerar un canal by-pass para desviar el flujo mientras se efectúa el mantenimiento del desarenador.

22. La descarga del flujo puede ser controlada a través de dispositivos como vertederos(sutro) o canales Parshall (garganta).

smV

smV

h

h

/ 216.0 gruesa arena

/ 16.0 fina arena

=→

=→

40.05.122bB

tg

bBLt o

−=×

−=Donde:Lt: Longitud de transición ingreso (m)b: Ancho del canal de llegada a la transición (m)B: Ancho de la zona de sedimentación (m)

60

4.3.12 Regulación de la Velocidad y Medición de Caudal

� Para que se mantenga la velocidad prácticamente constante en los desarenadores, es indispensable que el diseño de la sección de flujo estéen concordancia con las características del elemento controlador aguas abajo.

� Es costumbre adoptar un vertedero convencional (Parshall o Sutro, por ejemplo) para establecer una lámina ya conocida para cada caudal. Estos datos están consignados en tablas de fácil obtención. Conocido el caudal y su lámina correspondiente se puede determinar la forma o el perfil de la sección transversal del canal del desarenador, para que sea obedecida la velocidad de 0.30 m/s.

Page 31: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

61

4.3.14 Dimensionamiento

1. Se determina la velocidad de sedimentación de acuerdo a los criterios indicados anteriormente en relación a los diámetros de las partículas. Como primera aproximación utilizamos la ley de Stokes.

2

181

dgV ss ⋅−⋅=

µρρ

Al disminuir la temperatura aumenta la viscosidad afectando la velocidad de sedimentación de las partículas. (aguas frías retienen sedimentos por periodos más largos que cursos de agua más calientes).

2. Se comprueba el número de Reynolds ηdVs ×=Re

En caso que el número de Reynolds no cumpla para la aplicación de la ley de Stokes (Re<0.5), se realizará un reajuste al valor de Vs considerando la sedimentación de la partícula en régimen de transición, mediante el término del diámetro y el término de velocidad de sedimentación del gráfico 1

ρµ

dVs ×=Reó

62

4.3.14 Dimensionamiento

3. Se determina el coeficiente de arrastre (CD), con el valor del número de Reynoldsa partir del nuevo valor de Vs hallado

( )d

CgVs

D

s

ρρρ

⋅−=

3

4

34.0324 ++=RR

CD

4. Se determina la velocidad de sedimentación de la partícula en la zona de transición mediante la ecuación

5. Se realiza un ajuste tomando en cuenta el tiempo de retención teórico del agua respecto al práctico (coeficiente de seguridad), mediante el gráfico 3.

As

QVs=

As

seguridadcoefQVs

.'

×=

Page 32: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

63

4.3.14 Dimensionamiento

6. Determinamos la velocidad limite que resuspende el material o velocidad de desplazamiento:

dgfk

V sd )1(8 −= ρ

7. Estimamos el valor de f mediante el gráfico 4

Donde:K: factor de forma (m) f: factor de rugosidad de la cámara (m)Vd: Velocidad límite de desplazamiento o velocidad de

arraste (cm/s)

ηhm VR

R⋅= 4

Donde:n: viscosidad cinemática Vh: Velocidad horizontal (cm/s)Rm: Radio medio hidráulico (cm)

64

4.3.14 Dimensionamiento

8. Determinamos la velocidad horizontal (Vh), mediante la ecuación:

th A

QV =

9. Luego se debe cumplir la relación Vd > Vh, lo que asegura que no se producirá la resuspensión.

10. Las dimensiones de ancho, largo y profundidad serán de tal forma que se cumpla con las relaciones determinadas en los criterios de diseño mencionados.

11. La longitud de la transición de ingreso la determinamos mediante la ecuación:

Donde:K: factor de forma (m) f: factor de rugosidad de la cámara (m)Vd: Velocidad límite de desplazamiento o velocidad de

arraste (cm/s)

otg

bBLt

θ×−=

2

Donde:Lt: Longitud de transición ingreso (m)b: Ancho del canal de llegada a la transición (m)B: Ancho de la zona de sedimentación (m)ϴ: Ángulo de divergencia (12°30’)

Page 33: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

65

Ejemplo Diseño Desarenador

8. Determinamos la velocidad horizontal (Vh), mediante la ecuación:

th A

QV =

9. Luego se debe cumplir la relación Vd > Vh, lo que asegura que no se producirá la resuspensión.

10. Las dimensiones de ancho, largo y profundidad serán de tal forma que se cumpla con las relaciones determinadas en los criterios de diseño mencionados.

11. La longitud de la transición de ingreso la determinamos mediante la ecuación:

Donde:K: factor de forma (m) f: factor de rugosidad de la cámara (m)Vd: Velocidad límite de desplazamiento o velocidad de

arraste (cm/s)

otg

bBLt

θ×−=

2

Donde:Lt: Longitud de transición ingreso (m)b: Ancho del canal de llegada a la transición (m)B: Ancho de la zona de sedimentación (m)ϴ: Ángulo de divergencia (12°30’)

66

Ejemplo diseño desarenador

Una comunidad desea implementar la construcción de una nueva planta de tratamiento de aguas residuales. La población futura al año 20 (población de diseño) se estima en 55,000 habitantes. De acuerdo con los hábitos de consumo de agua potable de la localidad se establece una dotación de 200 l/hab/día. Tendiendo en consideración que el % de contribución al alcantarillado es del orden del 85% y que los factores de variación de consumo máximo y mínimo son: 1.8 y 0.7, respectivamente. Se pide dimensionar la unidad de pre tratamiento de desarenador teniendo en consideración que la arena tiene una densidad relativa de 2.65, el diámetro efectivo dec la partícula es de 0.2 mm, la temperatura del agua 20°C.

slónContribuciDotPob

p /22.10885.086400

20055000%

86400Q =××=××=

Solución

1) Cálculo de caudales

slQKQ

slQKQ

p

p

/80.7522.1087.0

/80.19422.1088.1

minmin

maxmax

=×=×=

=×=×=

Page 34: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

67

Ejemplo diseño desarenador

5.002.7/1001015.1

02.0/55.3Re 22 >=

××= − scm

cmscm

( ) scmcmscmx

scmds

gVs /55.302.0/1001015.1

165.2/981

1811

181 2

2222 =

−=

−= −ηρ

ηdVs ×=Re

2) Cálculo de Velocidad de sedimentación

3) Número de Reynolds

De la tabla del Anexo 2:

Viscosidad cinemática (η)=1.0105x10-2 cm2/s

Por lo tanto, no se encuentra en la zona de la ley de Stokes:

Se realiza un reajuste mediante el gráfico 1.

( ) ( )( ) 02.5)02.0(

21001015.1

165.298113/1

2

3/1

2 =

−−=

−x

dsg

ηρ

68

Ejemplo diseño desarenador

4) Reajuste de Velocidad de Sedimentación

( ) ( )( ) 02.5)02.0(

1001015.1

165.298113/1

22

3/1

2=

−=

−−x

dsg

ηρ

Se realiza un reajuste mediante el gráfico 1.

Del gráfico : ( )[ ]1

1 3/1=

− ηρsg

Vs

( )[ ] 3/121001015.1165.2981 −×−=Vs

scmVs /54.2=

Page 35: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

69

Ejemplo diseño desarenador

5) Comprobación de Número de Reynolds

02.5/1001015.1

02.0/54.2Re 22 =

××= − scm

cmscm Entonces se encuentra en la zona de transición (ley de Allen)

6) Cálculo coeficiente de arrastre:

34.0324 ++=RR

CD 46.634.002.5

3

02.5

24 =++=DC

7) Velocidad de sedimentación en zona de transición

( )02.0

46.6165.2

98134 ×−××=Vs scmVs /58.2=

( )d

CgVs

D

s

ρρρ

⋅−=

3

4

70

Ejemplo diseño desarenador

8) Comprobación de Número de Reynolds

smAs

Vs /0258.075.1

1000

22.108

' =×

=

Si se asume una eficiencia del 75%, de acuerdo con la grafica 3 se adopta un

coeficiente de seguridad igual a 1,75.

As

seguridadcoefQVs

.'

×=Gráfica 3 – Curvas de Comportamiento

234.7 mAs=

Norma S.090 como mín 2 und.

Page 36: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

71

HH.VQ

B = H25=L

8) Dimensiones del desarenador (zona sedimentación

Se determina las dimensiones de largo, ancho y profundidad respetando los

criterios de diseño.

BLmAs ×== 234.7

0.5812.500.50

0.7410.000.40

0.987.500.30

B(m)L (m)H(asumido)

L= 7.50m

B= 1.00m

H=0.30m

L= 7.50m

B= 1.00m

H=0.30m

72

SESIÓN 4.4:

MEDIDOR DE CAUDAL

VERTEDERO PARSHALL

Ing. Omar E. Olivos Lara

CAPITULO IV:CAPITULO IV:TRATAMIENTO PRELIMINARTRATAMIENTO PRELIMINAR

UNIVERSIDAD ALAS PERUANAS

FACULTAD DE INGENIERIA AMBIENTAL

Page 37: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

73

4.4 Vertedero Parshall

� La canaleta Parshall, es un medidor de régimen critico desarrollado por el ingeniero Ralph Parshall. Consta de tres secciones: una entrada convergente, una sección central o garganta y una sección divergente.

74

4.3.1 Vertedero Parshall

� Cuando este medidor trabaja en condiciones de descarga libre, para calcular el caudal será suficiente conocer la lectura de la carga H para sustituirla en la expresión general:

nKHQ =Donde:

Q: Caudal, en m3/s

Ha: Tirante en la sección de medición de flujo, en m

K y n: Constantes

6.1011.6068

5.3061.6017

4.5151.5956

3.7281.5875

2.9351.5784

2.1821.5563

1.4261.5502

1.0541.5381.5

0.6901.5221

0.5351.5309

0.3811.5806

0.1761.5473

KnW

Valores de K y n

Page 38: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

75

Vertedero Parshall

5660200.0305.010

3950130.7244.08

3440115.4213.57

292974.4183.06

242262.8152.55

1921.536.79122.04

1426.317.2691.53

936.711.8961.02

696.24.2545.71.5

455.63.1130.51

251.92.5522.99

110.41.5215.26

53.80.857.63

MáximaMínima(cm)(Pulg/Pies)

Capacidad (l/s)

Capacidad (l/s)

WW

76

Dimensiones Standard

34.314.2122.091.5122.0475.9366.0260.8274.5305.010

22.97.691.561.091.5340.0274.5239.0244.0244.08

22.97.691.561.091.5303.0244.0224.0228.6213.57

22.97.691.561.091.5266.7213.5209.1213.3183.06

22.97.691.561.091.5230.3183.0194.1198.0152.55

22.97.691.561.091.5193.8152.5179.2182.8122.04

22.97.691.561.091.5157.2122.0164.2167.791.53

22.97.691.561.091.5120.791.5149.3152.361.02

22.97.691.561.091.5102.676.2142.0144.845.71.5

22.97.691.561.091.584.561.0134.4137.130.51

17.16.961.045.761.057.545.786.488.022.99

11.43.845.730.553.340.330.561.062.115.26

5.72.530.515.245.725.917.845.746.67.63

2.91.920.37.638.116.89.335.636.32.51

cmcmcmcmcmcmcmcmcmcmpulg

NKGFEDCBAWW

Page 39: TRATAMIENTO DE AGUAS - uap.edu.peuap.edu.pe/intranet/fac/material/24/20102BT240224E10240108011/... · desarenadores, y en casos especiales se emplean tamices. Estas unidades, en ocasiones

TRATAMIENTO DE AGUAS

77

Vertedero Parshall: Cálculo del Resalto

� A través de la siguiente. Ecuación se calcula el resalto:

� Según Marais (1971) el valor comúnmente retenido es de 75 l/1000 m3

minmax

maxminminmax

QQ

HQHQZ

−−=

ZH

ZH

Q

Q

mín

máx

mín

máx

−−=

ZHH −= max

78

Material Retenido