Termodinamica

9
Termodinámica. La termodinámica puede definirse como el tema de la Física que estudia los procesos en los que se transfiere energía como calor y como trabajo. Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura. O sea, el calor es muy semejante al trabajo. El calor se define como una transferencia de energía debida a una diferencia de temperatura, mientras que el trabajo es una transferencia de energía que no se debe a una diferencia de temperatura. Al hablar de termodinámica, con frecuencia se usa el término "sistema". Por sistema se entiende un objeto o conjunto de objetos que deseamos considerar. El resto, lo demás en el Universo, que no pertenece al sistema, se conoce como su "ambiente". Se consideran varios tipos de sistemas. En un sistema cerrado no entra ni sale masa, contrariamente a los sistemas abiertos donde sí puede entrar o salir masa. Un sistema cerrado es aislado si no pasa energía en cualquiera de sus formas por sus fronteras. Previo a profundizar en este tema de la termodinámica, es imprescindible establecer una clara distinción entre tres conceptos básicos: temperatura, calor y energía interna. Como ejemplo ilustrativo, es conveniente recurrir a la teoría cinética de los gases, en que éstos sabemos están constituidos por numerosísimas moléculas en permanente choque entre sí. La temperatura es una medida de la energía cinética media de las moléculas individuales. El calor es una transferencia de energía, como energía térmica, de un objeto a otro debida a una diferencia de temperatura. La energía interna (o térmica) es la energía total de todas las moléculas del objeto, o sea incluye energía cinética de traslación, rotación y vibración de las moléculas, energía potencial en moléculas y energía potencial entre moléculas. Para mayor claridad, imaginemos dos barras calientes de un mismo material de igual masa y temperatura. Entre las dos tienen el doble de la energía interna respecto de una sola barra. Notemos que el flujo de calor entre dos objetos depende de sus temperaturas y no de cuánta energía térmica o interna tiene cada uno. El flujo de calor es siempre desde el objeto a mayor temperatura hacia el objeto a menor temperatura. Primera Ley de la Termodinámica. Esta ley se expresa como: E int = Q – W.

description

 

Transcript of Termodinamica

Page 1: Termodinamica

Termodinámica.

La termodinámica puede definirse como el tema de la Física que estudia los procesos en los que se transfiere energía como calor y como trabajo.

Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura. O sea, el calor es muy semejante al trabajo.

El calor se define como una transferencia de energía debida a una diferencia de temperatura, mientras que el trabajo es una transferencia de energía que no se debe a una diferencia de temperatura.

Al hablar de termodinámica, con frecuencia se usa el término "sistema". Por sistema se entiende un objeto o conjunto de objetos que deseamos considerar. El resto, lo demás en el Universo, que no pertenece al sistema, se conoce como su "ambiente". Se consideran varios tipos de sistemas. En un sistema cerrado no entra ni sale masa, contrariamente a los sistemas abiertos donde sí puede entrar o salir masa. Un sistema cerrado es aislado si no pasa energía en cualquiera de sus formas por sus fronteras.

Previo a profundizar en este tema de la termodinámica, es imprescindible establecer una clara distinción entre tres conceptos básicos: temperatura, calor y energía interna. Como ejemplo ilustrativo, es conveniente recurrir a la teoría cinética de los gases, en que éstos sabemos están constituidos por numerosísimas moléculas en permanente choque entre sí.

La temperatura es una medida de la energía cinética media de las moléculas individuales. El calor es una transferencia de energía, como energía térmica, de un objeto a otro debida a una diferencia de temperatura.

La energía interna (o térmica) es la energía total de todas las moléculas del objeto, o sea incluye energía cinética de traslación, rotación y vibración de las moléculas, energía potencial en moléculas y energía potencial entre moléculas. Para mayor claridad, imaginemos dos barras calientes de un mismo material de igual masa y temperatura. Entre las dos tienen el doble de la energía interna respecto de una sola barra. Notemos que el flujo de calor entre dos objetos depende de sus temperaturas y no de cuánta energía térmica o interna tiene cada uno. El flujo de calor es siempre desde el objeto a mayor temperatura hacia el objeto a menor temperatura.

Primera Ley de la Termodinámica.

Esta ley se expresa como: Eint = Q – W.

Cambio en la energía interna en el sistema = Calor agregado (Q) - Trabajo efectuado por el sistema (W). Notar que el signo menos en el lado derecho de la ecuación se debe justamente a que W se define como el trabajo efectuado por el sistema.

Para entender esta ley, es útil imaginar un gas encerrado en un cilindro, una de cuyas tapas es un émbolo móvil y que mediante un mechero podemos agregarle calor. El cambio en la energía interna del gas estará dado por la diferencia entre el calor agregado y el trabajo que el gas hace al levantar el émbolo contra la presión atmosférica.

Segunda Ley de la Termodinámica.

La primera ley nos dice que la energía se conserva. Sin embargo, podemos imaginar muchos procesos en que se conserve la energía, pero que realmente no ocurren en la naturaleza. Si se acerca un objeto caliente a uno frío, el calor pasa del caliente al frío y nunca al revés. Si pensamos que puede ser al revés, se seguiría conservando la energía y se cumpliría la primera ley.

En la naturaleza hay procesos que suceden, pero cuyos procesos inversos no. Para explicar esta falta de reversibilidad se formuló la segunda ley de la termodinámica, que tiene dos enunciados equivalentes:

Page 2: Termodinamica

Enunciado de Kelvin - Planck: Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito y la realización de una cantidad igual de trabajo.

Enunciado de Clausius: Es imposible construir una máquina cíclica cuyo único efecto sea la transferencia continua de energía de un objeto a otro de mayor temperatura sin la entrada de energía por trabajo.

Tercera Ley de la Termodinámica y Ley Cero

Ley Cero de la Termodinámica (de Equilibrio):

"Si dos objetos A y B están por separado en equilibrio térmico con un tercer objeto C, entonces los objetos A y B están en equilibrio térmico entre sí".

Como consecuencia de esta ley se puede afirmar que dos objetos en equilibrio térmico entre sí están a la misma temperatura y que si tienen temperaturas diferentes, no se encuentran en equilibrio térmico entre sí.

Tercera Ley de la Termodinámica.

La tercera ley tiene varios enunciados equivalentes:

"No se puede llegar al cero absoluto mediante una serie finita de procesos". Es el calor que entra desde el "mundo exterior" lo que impide que en los experimentos se alcancen temperaturas más bajas. El cero absoluto es la temperatura teórica más baja posible y se caracteriza por la total ausencia de calor. Es la temperatura a la cual cesa el movimiento de las partículas. El cero absoluto (0 K) corresponde aproximadamente a la temperatura de - 273,16ºC. Nunca se ha alcanzado tal temperatura y la termodinámica asegura que es inalcanzable.

"La entropía de cualquier sustancia pura en equilibrio termodinámico tiende a cero a medida que la temperatura tiende a cero".

"La primera y la segunda ley de la termodinámica se pueden aplicar hasta el límite del cero absoluto, siempre y cuando en este límite las variaciones de entropía sean nulas para todo proceso reversible".

La termodinámica (del griego termo, que significa "calor" y dinámico, que significa "fuerza") es una rama de la física que estudia los fenómenos relacionados con el calor.

Específicamente, la termodinámica se ocupa de las propiedades macroscópicas (grandes, en oposición a lo microscópico o pequeño) de la materia, especialmente las que son afectadas por el calor y la temperatura, así como de la transformación de unas formas de energía en otras.

Estudia los intercambios de energía térmica entre sistemas y los fenómenos mecánicos y químicos que implican tales intercambios. En particular, estudia los fenómenos en los que existe transformación de energía mecánica en térmica o viceversa.Cuando la energía (mecánica, térmica, eléctrica, química…) se transforma de una forma a otra, siempre hay una cantidad que se convierte en calor.

Aproximadamente, calor significa "energía en tránsito" y dinámica se refiere al Motor de combustión interna: transferencia de energía.

Page 3: Termodinamica

"movimiento", por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento.

Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.

Es importante saber que la termodinámica estudia los sistemas que se encuentran en equilibrio. Esto significa que las propiedades del sistema —típicamente la presión, la temperatura, el volumen y la masa, que se conocen como variables termodinámicas— son constantes.

Además, la termodinámica nos ayuda a comprender por qué los motores no pueden ser nunca totalmente eficientes y por qué es imposible enfriar nada hasta el cero absoluto, una temperatura a la que las sustancias no tienen energía calórica.

Los principios de la termodinámica se pueden aplicar al diseño de motores, al cálculo de la energía liberada en reacciones o a estimar la edad del Universo.

El punto de partida para la mayor parte de las consideraciones termodinámicas son las leyes de la termodinámica, que postulan que la energía puede ser intercambiada entre sistemas físicos en forma de calor o trabajo. También se postula la existencia de una magnitud llamada entropía, que puede ser definida para cualquier sistema. Las Leyes Termodinámicas pueden expresarse de la siguiente manera:

Ley Cero de la Termodinámica.

A esta ley se le llama de "equilibrio térmico". El equilibrio térmico debe entenderse como el estado en el cual los sistemas equilibrados tienen la misma temperatura.

Esta ley dice "Si dos sistemas A y B están a la misma temperatura, y B está a la misma temperatura que un tercer sistema C, entonces A y C están a la misma temperatura". Este concepto fundamental, aun siendo ampliamente aceptado, no fue formulado hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición cero.Un ejemplo de la aplicación de esta ley lo tenemos en los conocidos termómetros.

Primera Ley de la Termodinámica.

Esta primera ley, y la más importante de todas, también conocida como principio de conservación de la energía, dice: "La energía no puede ser creada ni destruida, sólo puede transformarse de un tipo de energía en otro".

Intercambio de energía.

Page 4: Termodinamica

La primera ley de la termodinámica da una definición precisa del calor, y lo identifica como una forma de energía. Puede convertirse en trabajo mecánico y almacenarse, pero no es una sustancia material.Experimentalmente se demostró que el calor, que originalmente se medía en unidades llamadas calorías, y el trabajo o energía, medidos en julios, eran completamente equivalentes. Una caloría equivale a 4,186 julios.

Segunda Ley de la Termodinámica.

La segunda ley dice que "solamente se puede realizar un trabajo mediante el paso del calor de un cuerpo con mayor temperatura a uno que tiene menor temperatura". Al respecto, siempre se observa que el calor pasa espontáneamente de los cuerpos calientes a los fríos hasta quedar a la misma temperatura.

La segunda ley de la termodinámica da, además, una definición precisa de una propiedad llamada entropía (fracción de energía de un sistema que no es posible convertir en trabajo).

Para entenderla, la entropía puede considerarse como una medida de lo próximo o no que se halla un sistema al equilibrio; también puede considerarse como una medida del desorden (espacial y térmico) del sistema.

Pues bien, esta segunda ley afirma que "la entropía, o sea, el desorden, de un sistema aislado nunca puede decrecer. Por tanto, cuando un sistema aislado alcanza una configuración de máxima entropía, ya no puede experimentar cambios: ha alcanzado el equilibrio" (Ver: Procesos reversibles e irreversibles en la Naturaleza).Como la entropía nunca puede disminuir, la naturaleza parece pues "preferir"’ el desorden y el caos. Puede demostrarse que el segundo principio implica que, si no se realiza trabajo, es imposible transferir calor desde una región de temperatura más baja a una región de temperatura más alta.

Tercera Ley de la Termodinámica.

El tercer principio de la termodinámica afirma que "el cero absoluto no puede alcanzarse por ningún procedimiento que conste de un número finito de pasos. Es posible acercarse indefinidamente al cero absoluto, pero nunca se puede llegar a él".

Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico.

Asimismo, cabe destacar que el primer principio, el de conservación de la energía, es una de las más sólidas y universales de las leyes de la naturaleza descubiertas hasta ahora por la ciencia.

Fuentes Internet:http://usuarios.lycos.es/yxtzbldz85/

Trabajo y energía.

El cero absoluto implicaría falta total de movimiento atómico.

Page 5: Termodinamica

Leyes de la termodinámica para dummies.

Se considera que las Leyes de la Termodinámica son las leyes de «más categoría» de toda la física, y por ende, de toda la ciencia. Son las más comprobadas de toda la ciencia, y se consideran auténticos pilares de la física. Si algún día se demostraran equivocadas, toda nuestra ciencia moderna se tambalearía.

Y sin embargo, pese a su importancia, son menos conocidas por el «ciudadano de a pie» que otras, como la Ley de Gravitación Universal, o la Ley de Acción y Reacción (Tercera Ley de Newton). Pues bien, en el artículo de hoy las repasaremos utilizando una divertida forma de recordarlas (una conocida formulación humorística de las tres leyes clásicas de la termodinámica, cuyo origen desconozco).

Primera Ley

La Primera Ley de la Termodinámica, en realidad sí que es muy conocida por el público en general, y posiblemente sea la ley física más conocida por todo el mundo. Se trata de la ley de conservación de la energía, que podemos enunciar así: «La energía ni se crea ni se destruye, sólo se transforma».

Su enunciación formal es diferente, pero la idea que subyace es esa. En cualquier proceso que podemos imaginar, la energía en juego es siempre la misma. Si ganamos energía, debe ser a costa de algo o alguien, y si la perdemos, debe ir a algún sitio. No podemos obtener energía de la nada, o como dice el dicho popular, «de donde no hay, no se puede sacar».

Durante siglos, inventores de todo tipo han intentado encontrar lo que se denomina «máquina de movimiento perpetuo de primera especie»: una máquina que produce más energía de la que consume. Pero como podemos ver, eso es imposible. La Primera Ley nos lo impide.

En el juego de la termodinámica, sencillamente, no puedes ganar.

Segunda Ley

La Segunda Ley de la Termodinámica es algo menos conocida, y más «críptica». Puede que a alguno le suene como la ley de «eso raro de la entropía». En efecto, la enunciación más común de la Segunda Ley nos dice que la entropía de un sistema (cerrado y que no esté en equilibrio), tiende a incrementarse con el tiempo, hasta alcanzar el equilibrio.

¿Y eso qué significa? ¿Qué es eso de la entropía? Bueno, podemos definir la entropía como la «energía no aprovechable» para realizar un trabajo. Es decir, una energía que está ahí, pero que no podemos utilizar. ¿Y cómo es eso? Veamos, cualquier objeto del universo, por el mero hecho de estar a una temperatura superior al cero absoluto (0 K), tiene una energía interna, que denominamos calor (en realidad, siendo puristas, el calor es la transferencia de esa energía interna, pero de momento no necesitamos ser tan precisos). Pero para aprovechar ese calor, el objeto debe poder transferirlo a otro. Y para que esto ocurra, ese segundo objeto debe tener menor temperatura.

Esto es muy fácil de entender si pensamos en lo siguiente: imaginemos que tenemos una jarra de leche caliente, y otra de leche fría. Si mezclamos ambos líquidos, la leche fría se calentará, y la caliente se enfriará, hasta que tengamos toda la leche a la misma temperatura. Sin embargo, si volvemos a separar la leche en dos jarras, nunca, jamás de los jamases, una se enfriará a costa de la otra (que se calentaría), de forma natural. Al mezclar la leche de las dos jarras, hemos realizado un proceso irreversible. Si queremos volver a tener una diferencia de temperatura entre las jarras, necesitaremos una fuente de energía externa, para «bombear» el calor de una a la otra.

Así que podemos pensar que la Segunda Ley nos dice que el calor fluye de forma natural de los cuerpos de más temperatura, a los de menos. Y si queremos invertir ese proceso, necesitamos aplicar energía. Por eso los aires acondicionados y los frigoríficos consumen energía, a pesar de extraer calor (energía) de otros objetos, ya que ese calor extraído no es aprovechable.

Una de las consecuencias de esta ley (y así la definió Lord Kelvin), es que no podemos transformar el 100% del calor en energía aprovechable. O lo que es lo mismo, no existe ningún proceso de transformación de energía, 100% eficiente. En todo proceso, perderemos algo de energía, en forma de calor, que se utilizará

Page 6: Termodinamica

para elevar la temperatura de algún componente de nuestra máquina, o de su entorno, y no podremos aprovechar.

Durante siglos, los inventores han intentado también encontrar una forma de transformar la energía, con una eficiencia del 100%. Pero eso sería una «máquina de movimiento perpetuo de segunda especie», algo menos ambiciosa que la de primera especie, pero igualmente imposible, ya que la Segunda Ley nos lo impide.

En el juego de la termodinámica, tampoco puedes empatar.

Tercera Ley

La Tercera Ley de la Termodinámica, sí que es una «gran desconocida» para público en general. Es «la otra», el George Harrison de la Termodinámica. Y sin embargo también es fundamental, ya que nos permite definir escalas absolutas de temperatura. Básicamente nos dice que es imposible alcanzar la temperatura de 0 K (cero absoluto), en un número finito de procesos, lo que en la práctica significa que es imposible alcanzar dicha temperatura.

Eso quiere decir que todos los objetos del universo tienen una temperatura superior a 0 K, por lo que todos los objetos del universo, tienen algo de calor, aunque sea muy poco. Y por tanto, ninguno escapa de la Termodinámica.

En el juego de la termodinámica, ni si quiera puedes abandonar.

«Ceroésima» Ley.

Existe una Ley Cero de la Termodinámica. Este curioso nombre es debido a que es mucho más básica que las demás, pero se enunció con bastante posterioridad (ya teníamos una Primera Ley). Dice que dos sistemas que estén en equilibrio termodinámico con un tercero, entonces están en equilibrio entre sí. Puede parecer una perogrullada, pero es necesaria enunciarla formalmente.

Tiranía termodinámica

Si nos quedamos con las tres leyes clásicas de la termodinámica, tenemos un juego en el que nunca querríamos participar, si tuviéramos la posibilidad de elegir:

No puedes ganar.

No puedes empatar.

No puedes abandonar.

Así que sólo nos queda perder. Y ciertamente, si el universo durase lo suficiente, llegaría un momento en el que todas sus partículas estarían a la misma temperatura, y sería imposible ningún proceso termodinámico. Es lo que se conoce como la Muerte Térmica del Universo.

Pero no podemos elegir. Es el juego que nos ha tocado jugar, y no podemos cambiar sus reglas.

Por Alfonso de Terán Riva