Solucion de Estructuras Con Cargas en Los Nudos

download Solucion de Estructuras Con Cargas en Los Nudos

of 17

description

Solucion de Estructuras Con Cargas en Los Nudos

Transcript of Solucion de Estructuras Con Cargas en Los Nudos

  • 29/01/2016 - UTSLABDOC01 -

    1

    ESTRUCTURAS PLANAS CON CARGAS EN LOS NUDOS

    Tres coordenadas locales

    Ing.: Juan Manuel Urteaga Garca

    1 2

    3

    1 2

    3

    1 3

    2

    4.00

    3.004.00

    Solucionar la estructura mostrada; Trazar los

    diagramas de Momento Flector, Fuerza

    Cortante y la deformada Viga = (0.30 X 0.60)

    Col. = (0.40 X 0.50)

    E = 2.1 E +06 Tn/m2

  • 29/01/2016 - UTSLABDOC01 -

    2

    10.00 T.m. 9.00 T.m.

    4.00 T.

    CARGAS ACTUANTES

    RELACIONES DE COMPATIBILIDAD

  • 29/01/2016 - UTSLABDOC01 -

    3

    Elemento D1

    D2

    D3

    1

    qi 0 0 0

    qj 1 0 0

    D 0 0 1

    2

    qi 1 0 0

    qj 0 1 0

    D 0 0 3/4

    3

    qi 0 0 0

    qj 0 1 0

    D 0 0 5/4

    0

    1

    0

    1

    0

    0

    0

    0

    0

    0

    0

    0

    0

    1

    0

    0

    1

    0

    0

    0

    -1

    0

    0

    3/4

    0

    0

    -5/45/4 3/4

    RELACIONES DE COMPATIBILIDAD

    Miembro 1 Miembro 2 Miembro 3

    qI,1 = 0 qI,2 = D1 qI,3 = 0

    qJ,1 = D1 qJ,2 = D2 qJ,3 = D2

    D1 = -D3 D1 = (3/4)D3 D3 = -(5/4)D3

  • 29/01/2016 - UTSLABDOC01 -

    4

    DETERMINACIN DE LOS COEFICIENTES DE RIGIDEZ

    K i,j

    PRIMERA DEFORMADA

    Desplazamientos

    D1 = 1

    D2 = 0

    D3 = 0

  • 29/01/2016 - UTSLABDOC01 -

    5

    COEFICIENTES DE RIGIDEZ (PRIMERA COORDENADA)

    4EI1/L1

    K1,1

    K2,1

    4EI2/L2 2EI2/L2

    K1,1 = 4EI1/L1 + 4EI2/L2 = 4(2.1x106)((0.0042/4)+(0.0054/4)) = 20160 T.m.

    K2,1 = 2EI2/L2 = 2(2.1x106)(0.0054)/4 = 5670 T.m.

    COEFICIENTES DE RIGIDEZ (PRIMERA COORDENADA)

    6EI1/L12

    K3,1

    6EI2/L22

    6EI1/L12 = B

    6EI2/L22 = A

    53

    P3

    P2

    SFy = 0 => (4/5)P3 = A => P3 = (5/4)A

    SFx = 0 => P2+ B = (3/5)P3 => P2 = (3/5)(5/4)A B =>P2 = (3/4)A B (Neg)

    K3,1 = 6EI2/L22(3/4)-6EI1/L1

    2 = 6(2.1x106)((0.0054/42)(3/4)-(0.0042/52))

    K3,1 = 118.125 T.

  • 29/01/2016 - UTSLABDOC01 -

    6

    SEGUNDA DEFORMADA

    Desplazamientos

    D1 = 0

    D2 = 1

    D3 = 0

    COEFICIENTES DE RIGIDEZ (SEGUNDA COORDENADA)

    2EI2/L2

    K1,24EI3/L3

    4EI2/L2

    K2,2

    K1,2 = 2EI2/L2 = 2(2.1x106)(0.0054)/4 = 5670 T.m.

    K2,2 = 4EI2/L2 + 4EI3/L3 = 4(2.1x106)((0.0054/4)+(0.0042/5)) = 18396 T.m.

  • 29/01/2016 - UTSLABDOC01 -

    7

    COEFICIENTES DE RIGIDEZ (SEGUNDA COORDENADA)

    K3,2

    SFy = 0 => (3/5)B+(4/5)P3 = A => P3 = (5/4)(A-(3/5)B) => P3 = (5/4)A-(3/4)B

    SFx = 0 => P2+(4/5)B = (3/5)P3 => P2 = (3/5)((5/4)A-(3/4)B)-(4/5)B

    =>P2 = (3/4)A-(5/4)B

    K3,2 = 6EI2/L22(3/4)-6EI3/L3

    2(5/4) = 6(2.1x106)((0.0054/42)(3/4)-(0.0042/52)(5/4))

    K3,2 = -543 T.

    6EI3/L32

    6EI2/L22

    6EI3/L32 = B

    6EI2/L22 = A

    5337

    P3

    P2

    TERCERA DEFORMADA

    Desplazamientos

    D1 = 0

    D2 = 0

    D3 = 1

  • 29/01/2016 - UTSLABDOC01 -

    8

    COEFICIENTES DE RIGIDEZ (TERCERA COORDENADA)

    6EI1/L12

    K1,3

    6EI3/L32(5/4)

    K2,3

    K1,3 = 6EI1/L12- 6EI2/L2

    2(3/4) = 6(2.1x106)((0.0042/42)-(0.0054/42)(3/4))

    K1,3 = 118.125 T.m.

    K2,3 = -6EI2/L22(3/4)+6EI3/L3

    2(5/4) = -6(2.1x106)((0.0054/42)(3/4)+(0.0042/52)(5/4))

    K2,3 = -543 T.m.

    6EI2/L22(3/4)

    6EI2/L22(3/4)

    5/4

    4/4

    3/4

    COEFICIENTES DE RIGIDEZ (TERCERA COORDENADA)

    12EI3/L33(5/4)

    12EI1/L13

    K3,3

    SFy = 0 => (3/5)B + C = (4/5)P3 => P3 = (5/4)((3/5)B + C) => P3 = (3/4)B + (5/4)C

    SFx = 0 =>P2 = A + (4/5)B + (3/5)P3 => P2 = A + (4/5)B + (3/5)(3/4)B + (3/5)(5/4)C

    P2 = A + (4/5)B + (9/20)B + (3/4)C => P2 = A + (5/4)B + (3/4)C

    K3,3 = 12EI1/L13 + 12EI3/L3

    3(5/4)(5/4) + 12EI2/L23(3/4)(3/4)

    K3,3 = 12(2.1x106)((0.0042/43)+(0.0042/53)(5/4)(5/4)+(0.0054/43)(3/4)(3/4))

    K3,3 = 4172.77 T.

    12EI3/L33(5/4) = B

    12EI1/L13 = A

    5337

    P3

    P2

    12EI2/L23(3/4)

    12EI2/L23(3/4) = C

  • 29/01/2016 - UTSLABDOC01 -

    9

    COEFICIENTES DE RIGIDEZ

    K1,1=20160 T.m. K1,2=5670 T.m. K1,3=118 T

    K2,1=5670 T.m. K2,2=14868 T.m. K2,3=-543 T

    K3,1=118 T.m. K3,2=-543 T.m. K2,1=4173 T

    DETERMINACIN DE LAS CARGAS

    Q i

  • 29/01/2016 - UTSLABDOC01 -

    10

    D1 = 1

    D2 = 0

    D3 = 0Q1 = 10.00 (D1+ D2+ D3) T.m.

    Q1 = 10.00 (1 + 0 + 0 ) T.m.

    Q1 = 10.00 T.m.

    D1 = 0

    D2 = 1

    D3 = 0Q2 = -9.00 (D1+ D2+ D3) T.m.

    Q2 = -9.00 (0 + 1 + 0 ) T.m.

    Q2 = -9.00 T.m.

  • 29/01/2016 - UTSLABDOC01 -

    11

    D1 = 0

    D2 = 0

    D3 = 1

    3/4

    Q3 = 4.00 (D1+ D2+ D3) T.

    Q3 = 4.00 (0 + 0 - 3/4 ) T.

    Q3 = -3.00 T.

    DESPLAZAMIENTOS GLOBALES

    Di

  • 29/01/2016 - UTSLABDOC01 -

    12

    20160 D1 + 5670 D2 + 118 D3 = 10.00

    5670 D1 + 14868 D2 - 543 D3 = -9.00

    118 D1 - 543 D2 + 4173 D3 = -3.00

    D1 = 7.0670 X10-4 Rad.

    D2 = -7.3167 X10-4 Rad.

    D3 = -8.3410 X10-4 m.

    DESPLAZAMIENTOS GLOBALES

    DESPLAZAMIENTOS LOCALES

    qi

    qj

    D

  • 29/01/2016 - UTSLABDOC01 -

    13

    DESPLAZAMIENTOS LOCALES

    Elemento 1

    qi = 0 Rad.

    qj = 7.07E-04 Rad.

    D = 8.34E-04 m.

    Elemento 2

    qi = 7.07E-04 Rad.

    qj = -7.32E-04 Rad.

    D = -6.26E-04 m.

    Elemento 3

    qi = 0 Rad.

    qj = -7.32E-04 Rad.

    D = 1.04E-03 m.

    ESFUERZOS LOCALES

    Mi Mj V

  • 29/01/2016 - UTSLABDOC01 -

    14

    Elemento 1 Mi = 4EI1/L1qi + 2EI1/L1qj - 6EI1/L1

    2D

    Mi = (2.1x106)(0.0042)(2(7.07x10-4)/4 - 6(8.34x10-4)/16)

    Mi = 0.36T.m.

    Mj = 2EI1/L1qi + 4EI1/L1qj - 6EI1/L12D

    MJ = (2.1x106)(0.0042)(4(7.07x10-4)/4 - 6(8.34x10-4)/16)

    MJ = 3.47 T.m.

    V = -6EI1/L12qi - 6EI1/L1

    2qj + 12EI1/L13D

    V = (2.1x106)(0.0042)(-6(7.07x10-4)/16 + 12(8.34x10-4)/64)

    V = -0.96T.

    ELEMENTO 2

    Mi = 4EI1/L1i + 2EI1/L1j - 6EI1/L12D

    Mi = (2.1x106)(0.0054)(4(7.07x10-4)/4 + 2(-7.32x10-4)/4 - 6(-6.26x10-4)/16)

    Mi = 6.53T.m.

    Mj = 2EI1/L1i + 4EI1/L1j - 6EI1/L12 D

    MJ = (2.1x106)(0.0054)(2(7.07x10-4)/4 + 4(-7.32x10-4)/4 - 6(-6.26x10-4)/16)

    MJ = -1.63T.m.

    V = -6EI1/L12i - 6EI1/L1

    2j + 12EI1/L13 D

    V = (2.1x106)(0.0054)(-6(7.07x10-4)/16 - 6(-7.32x10-4)/4 + 12(-6.26x10-4)/64)

    V = -1.22T.

  • 29/01/2016 - UTSLABDOC01 -

    15

    ELEMENTO 3

    Mi = 4EI1/L1i + 2EI1/L1j - 6EI1/L12D

    Mi = (2.1x106)(0.0042)(2(-7.32x10-4)/5 - 6(1.04x10- 3)/25)

    Mi = -4.79 T.m.

    Mj = 2EI1/L1i + 4EI1/L1j - 6EI1/L12D

    MJ = (2.1x106)(0.0042)(4(-7.32x10-4)/5 - 6(-1.04x10- 3)/25)

    MJ = -7.37 T.m.

    V = -6EI1/L12i - 6EI1/L1

    2j + 12EI1/L13D

    V = (2.1x106)(0.0042)(-6(-7.32x10-4)/25 + 12(-1.04x10- 3)/125)

    V = 2.43 T.

    DIAGRAMASCortante / Momento Flector / Deformada

  • 29/01/2016 - UTSLABDOC01 -

    16

    0.96 T.

    1.22 T.

    3.47 T.m.

    0.36 T.m.

    1.63 T.m.6.53 T.m.

  • 29/01/2016 - UTSLABDOC01 -

    17

    8.34E-04 m.

    7.07E-04 Rad

    7.07E-04 Rad-7.32E-04 Rad

    -6.26E-04 m

    1.04E-03 m

    7.32E-04 Rad