Solidos cristalinos by MAV

17
SOLIDOS CRISTALINOS Miguel Angel Vargas UNIVERSIDAD PRIVADA TELESUP INGENIERIA DE SISTEMAS 4to Ciclo

Transcript of Solidos cristalinos by MAV

Page 1: Solidos cristalinos by MAV

SOLIDOS CRISTALINOS

Miguel Angel Vargas

UNIVERSIDAD PRIVADA TELESUPINGENIERIA DE SISTEMAS 4to Ciclo

Page 2: Solidos cristalinos by MAV

Estructuras Cristalinas

Describir las propiedades y estructuras cristalinas de :

• Silicio

• Galio

• Germanio

Page 3: Solidos cristalinos by MAV

SILICIO

• El silicio es un elemento químico metaloide, número atómico 14 y situado en el grupo 14 de la tabla periódica de los elementos de símbolo Si. Es el segundo elemento más abundante en la corteza terrestre (27,7 % en peso) después del oxígeno. Se presenta en forma amorfa y cristalizada; el primero es un polvo parduzco, más activo que la variante cristalina, que se presenta en octaedros de color azul grisáceo y brillo metálico.

• El silicio es uno de los componentes principales de los aerolitos, una clase de meteoroides.

• Medido en peso, el silicio representa más de la cuarta parte de la corteza terrestre y es el segundo elemento más abundante por detrás del oxígeno. El silicio no se encuentra en estado nativo; arena, cuarzo, amatista, ágata, pedernal, ópalo y jaspe son algunos de los minerales en los que aparece el óxido, mientras que formando silicatos se encuentra, entre otros, en el granito, feldespato, arcilla, hornblenda y mica.

Page 4: Solidos cristalinos by MAV

Silicio: Estructura Cristalina

El silicio cristaliza con el mismo patrón que el diamante, en una estructura que Ashcroft y Mermin llaman celosías primitivas, "dos cubos interpenetrados de cara centrada". Las líneas entre los átomos de silicio en la ilustración de la red, indican los enlaces con los vecinos más próximos. El lado del cubo de silicio es 0,543 nm. El germanio tiene la misma estructura del diamante, con una dimensión de celda de 0,566 nm.

La ilustración de arriba muestra la disposición de los átomos de silicio en una célula unitaria, con números que indican la altura del átomo por encima de la base del cubo, como una fracción de la dimensión de la celda.

Page 5: Solidos cristalinos by MAV

Silicio: Propiedades

• Sus propiedades son intermedias entre las del carbono y el germanio. En forma cristalina es muy duro y poco soluble y presenta un brillo metálico y color grisáceo. Aunque es un elemento relativamente inerte y resiste la acción de la mayoría de los ácidos, reacciona con los halógenos y álcalis diluidos. El silicio transmite más del 95 % de las longitudes de onda de la radiación infrarroja.

• Se prepara en forma de polvo amarillo pardo o de cristales negros-grisáceos. Se obtiene calentando sílice, o dióxido de silicio (SiO2), con un agente reductor, como carbono o magnesio, en un horno eléctrico. El silicio cristalino tiene una dureza de 7, suficiente para rayar el vidrio, de dureza de 5 a 7. El silicio tiene un punto de fusión de 1.411 °C, un punto de ebullición de 2.355 °C y una densidad relativa de 2,33(g/ml). Su masa atómica es 28,086 u (unidad de masa atómica).

• Se disuelve en ácido fluorhídrico formando el gas tetrafluoruro de silicio, SiF4 (ver flúor), y es atacado por los ácidos nítrico, clorhídrico y sulfúrico, aunque el dióxido de silicio formado inhibe la reacción. También se disuelve en hidróxido de sodio, formando silicato de sodio y gas hidrógeno. A temperaturas ordinarias el silicio no es atacado por el aire, pero a temperaturas elevadas reacciona con el oxígeno formando una capa de sílice que impide que continúe la reacción. A altas temperaturas reacciona también con nitrógeno y cloro formando nitruro de silicio y cloruro de silicio, respectivamente.

El silicio constituye un 28 % de la corteza terrestre. No existe en estado libre, sino que se encuentra en forma de dióxido de silicio y de silicatos complejos. Los minerales que contienen silicio constituyen cerca del 40 % de todos los minerales comunes, incluyendo más del 90 % de los minerales que forman rocas volcánicas. El mineral cuarzo, sus variedades (cornalina, crisoprasa, ónice, pedernal y jaspe) y los minerales cristobalita y tridimita son las formas cristalinas del silicio existentes en la naturaleza. El dióxido de silicio es el componente principal de la arena. Los silicatos (en concreto los de aluminio, calcio y magnesio) son los componentes principales de las arcillas, el suelo y las rocas, en forma de feldespatos, anfíboles, piroxenos, micas y zeolitas, y de piedras semipreciosas como el olivino, granate, zircón, topacio y turmalina.

Page 6: Solidos cristalinos by MAV

Silicio: Apilcaciones

• Se utiliza en aleaciones, en la preparación de las siliconas, en la industria de la cerámica técnica y, debido a que es un material semiconductor muy abundante, tiene un interés especial en la industria electrónica y microelectrónica como material básico para la creación de obleas o chips que se pueden implantar en transistores, pilas solares y una gran variedad de circuitos electrónicos. El silicio es un elemento vital en numerosas industrias. El dióxido de silicio (arena y arcilla) es un importante constituyente del hormigón y los ladrillos, y se emplea en la producción de cemento portland. Por sus propiedades semiconductoras se usa en la fabricación de transistores, células solares y todo tipo de dispositivos semiconductores; por esta razón se conoce como el Valle del Silicio a la región de California en la que concentran numerosas empresas del sector de la electrónica y la informática. También se están estudiando las posibles aplicaciones del siliceno, que es una forma alotrópica del silicio que forma una red bidimensional similar al grafeno. Otros importantes usos del silicio son:

• Como material refractario, se usa en cerámicas, vidriados y esmaltados.• Como elemento fertilizante en forma de mineral primario rico en silicio, para la

agricultura.• Como elemento de aleación en fundiciones.• Fabricación de vidrio para ventanas y aislantes.• El carburo de silicio es uno de los abrasivos más importantes.• Se usa en láseres para obtener una luz con una longitud de onda de 456 nm.• La silicona se usa en medicina en implantes de seno y lentes de contacto.

Page 7: Solidos cristalinos by MAV

Silicio en la industria• Se utiliza en la industria del acero como componente de las aleaciones de silicio-acero. Para fabricar el acero, se

desoxida el acero fundido añadiéndole pequeñas cantidades de silicio; el acero común contiene menos de un 0,30 % de silicio. El acero al silicio, que contiene de 2,5 a 4 % de silicio, se usa para fabricar los núcleos de los transformadores eléctricos, pues la aleación presenta baja histéresis (véase Magnetismo). Existe una aleación de acero, el durirón, que contiene un 15 % de silicio y es dura, frágil y resistente a la corrosión; el durirón se usa en los equipos industriales que están en contacto con productos químicos corrosivos. El silicio se utiliza también en las aleaciones de cobre, como el bronce y el latón.

• El silicio es un semiconductor; su resistividad a la corriente eléctrica a temperatura ambiente varía entre la de los metales y la de los aislantes. La conductividad del silicio se puede controlar añadiendo pequeñas cantidades de impurezas llamadas dopantes. La capacidad de controlar las propiedades eléctricas del silicio y su abundancia en la naturaleza han posibilitado el desarrollo y aplicación de los transistores y circuitos integrados que se utilizan en la industria electrónica.

• La sílice y los silicatos se utilizan en la fabricación de vidrio, barnices, esmaltes, cemento y porcelana, y tienen importantes aplicaciones individuales. La sílice fundida, que es un vidrio que se obtiene fundiendo cuarzo o hidrolizando tetracloruro de silicio, se caracteriza por un bajo coeficiente de dilatación y una alta resistencia a la mayoría de los productos químicos. El gel de sílice es una sustancia incolora, porosa y amorfa; se prepara eliminando parte del agua de un precipitado gelatinoso de ácido silícico, SiO2•H2O, el cual se obtiene añadiendo ácido clorhídrico a una disolución de silicato de sodio. El gel de sílice absorbe agua y otras sustancias y se usa como agente desecante y decolorante.

• El silicato de sodio (Na2SiO3), también llamado vidrio, es un silicato sintético importante, sólido amorfo, incoloro y soluble en agua, que funde a 1088 °C. Se obtiene haciendo reaccionar sílice (arena) y carbonato de sodio a alta temperatura, o calentando arena con hidróxido de sodio concentrado a alta presión. La disolución acuosa de silicato de sodio se utiliza para conservar huevos; como sustituto de la cola o pegamento para hacer cajas y otros contenedores; para unir gemas artificiales; como agente incombustible, y como relleno y adherente en jabones y limpiadores. Otro compuesto de silicio importante es el carborundo, un compuesto de silicio y carbono que se utiliza como abrasivo.

• El monóxido de silicio, SiO, se usa para proteger materiales, recubriéndolos de forma que la superficie exterior se oxida al dióxido, SiO2. Estas capas se aplican también a los filtros de interferencias.

Page 8: Solidos cristalinos by MAV

GALIO

NOMBRE: GalioSIMBOLO: GaNUMERO: 31

El galio es un metal blando, grisáceo en estado líquido y plateado brillante al solidificar, sólido deleznable a bajas temperaturas que funde a temperaturas cercanas a la del ambiente (como cesio, mercurio y rubidio) e incluso cuando se sostiene en la mano por su bajo punto de fusión (28,56 °C). El rango de temperatura en el que permanece líquido es uno de los más altos de los metales (2174 °C separan sus puntos de fusión y ebullición) y la presión de vapor es baja incluso a altas temperaturas. El metal se expande un 3,1% al solidificar y flota en el líquido al igual que el hielo en el agua.

Presenta una acusada tendencia a subenfriarse por debajo del punto de fusión (permaneciendo aún en estado líquido) por lo que es necesaria una semilla (un pequeño sólido añadido al líquido) para solidificarlo. La cristalización no se produce en ninguna de las estructuras simples; la fase estable en condiciones normales es ortorrómbica, con 8 átomos en cada celda unitaria en la que cada átomo sólo tiene otro en su vecindad más próxima a una distancia de 2,44 Å y estando los otros seis a 2,83 Å. En esta estructura el enlace químico formado entre los átomos más cercanos es covalente siendo la molécula Ga2 la que realmente forma el entramado cristalino.

A otra presión y temperatura se han encontrado numerosas fases estables y metaestables distintas.

El galio corroe otros metales al difundirse en sus redes cristalinas.

Page 9: Solidos cristalinos by MAV

Galio: Estructura Cristalina

El galio pertenece al grupo de elementos metálicos conocido como metales del bloque p que están situados junto a los metaloides o semimetales en la tabla periódica. Este tipo de elementos tienden a ser blandos y presentan puntos de fusión bajos, propiedades que también se pueden atribuir al galio, dado que forma parte de este grupo de elementos.

El estado del galio en su forma natural es sólido. El galio es un elmento químico de aspecto blanco plateado y pertenece al grupo de los metales del bloque p. El número atómico del galio es 31. El símbolo químico del galio es Ga. El punto de fusión del galio es de 302,91 grados Kelvin o de 30,76 grados celsius o grados centígrados. El punto de ebullición del galio es de 2477 grados Kelvin o de 2204,85 grados celsius o grados centígrados.

Page 10: Solidos cristalinos by MAV

Galio: Propiedades• Propiedades atómicas del galio

• La masa atómica de un elemento está determinado por la masa total de neutrones y protones que se puede encontrar en un solo átomo perteneciente a este elemento. En cuanto a la posición donde encontrar el galio dentro de la tabla periódica de los elementos, el galio se encuentra en el grupo 13 y periodo 4. El galio tiene una masa atómica de 69,723 u.

• La configuración electrónica del galio es [Ar]3d10 4s2 4p1. La configuración electrónica de los elementos, determina la forma el la cual los electrones están estructurados en los átomos de un elemento. El radio medio del galio es de 130 pm, su radio atómico o radio de Bohr es de 136 pm, su radio covalente es de 126 pm y su radio de Van der Waals es de 187 pm. El galio tiene un total de 31 electrones cuya distribución es la siguiente: En la primera capa tiene 2 electrones, en la segunda tiene 8 electrones, en su tercera capa tiene 18 electrones y en la cuarta, 3 electrones.

• Características del galio:

• A continuación puedes ver una tabla donde se muestra las principales características que tiene el galio.• Galio• Símbolo químico Ga• Número atómico 31• Grupo 13• Periodo 4• Aspecto blanco plateado• Bloque p• Densidad 5904 kg/m3• Masa atómica 69.723 u• Radio medio 130 pm• Radio atómico 136• Radio covalente 126 pm• Radio de van der Waals 187 pm• Configuración electrónica [Ar]3d10 4s2 4p1• Electrones por capa2, 8, 18, 3• Estados de oxidación 3• Óxido anfótero• Estructura cristalinaortorrómbica• Estado sólido• Punto de fusión 302.91 K• Punto de ebullición 2477 K• Calor de fusión 5.59 kJ/mol• Presión de vapor 9,31 × 10-36Pa a 302,9 K• Electronegatividad 1,81• Calor específico 370 J/(K·kg)• Conductividad eléctrica 6,78 106S/m• Conductividad térmica 40,6 W/(K·m)

Page 11: Solidos cristalinos by MAV

Galio: Aplicaciones

• El galio es una sustancia plateado blanda y se funde a temperaturas ligeramente superiores a la temperatura ambiente. Fue descubierto en 1875 por el químico francés Paul Emile Lecoq de Boisbaudran. La mayor parte de producción de galio se produce como un subproducto de la producción de aluminio o zinc. El galio tiene una amplia variedad de usos en diferentes industrias. Si alguna vez te has preguntado para qué sirve el galio, a continuación tienes una lista de sus posibles usos:

• El uso principal del galio es en semiconductores donde se utiliza comúnmente en circuitos de microondas y en algunas aplicaciones de infrarrojos. También se utiliza en para fabricar diodos LED de color azule y violeta y diodos láser.

• El galio se usa en las armas nucleares para ayudar a estabilizar el plutonio.

• Se puede utilizar en el interior de un telescopio para encontrar neutrinos.

• El galio se usa como un componente en algunos tipos de paneles solares.

• También se utiliza en la producción de espejos.• El galinstano que es una aleación de galio, indio y estaño, se

utiliza en muchos termómetros médicos. Este ha sustituido a los tradicionales termómetros de mercurio que pueden ser peligrosos. Actualmente se encuentra en proceso de investigación la sustitución con galio del mercurio de los empastes dentales permanentes.

• El galinstano se puede aplicar al aluminio de modo que pueda reaccionar con el agua y generar hidrógeno.

• También tiene muchas aplicaciones médicas. Por ejemplo, las sales de galio se usan para tratar a personas con exceso de calcio en su sangre. Los isótopos de galio se utilizan en medicina nuclear para explorar a los pacientes en ciertas circunstancias.

Page 12: Solidos cristalinos by MAV

GERMANIO

• El germanio es un elemento químico con número atómico 32, y símbolo Ge perteneciente al período 4 de la tabla periódica de los elementos.

Page 13: Solidos cristalinos by MAV

Germanio: Propiedades

El germanio forma parte de los elementos denominados metaloides o semimetales. Este tipo de elementos tienen propiedades intermedias entre metales y no metales. En cuanto a su conductividad eléctrica, este tipo de materiales al que pertenece el germanio, son semiconductores.

• El estado del germanio en su forma natural es sólido. El germanio es un elmento químico de aspecto blanco grisáceo y pertenece al grupo de los metaloides. El número atómico del germanio es 32. El símbolo químico del germanio es Ge. El punto de fusión del germanio es de 1211,4 grados Kelvin o de 939,25 grados celsius o grados centígrados. El punto de ebullición del germanio es de 3093 grados Kelvin o de 2820,85 grados celsius o grados centígrados.

Page 14: Solidos cristalinos by MAV

Germanio: Estructura Cristalina

• El germanio es divalente o tetravalente. Los compuestos divalentes (óxido, sulfuro y los halogenuros) se oxidan o reducen con facilidad. Los compuestos tetravalentes son

mas estables. Los compuestos organogermánicos son numerosos y, en este aspecto, el germanio se parece al

silicio.

Page 15: Solidos cristalinos by MAV

Germanio: Aplicaciones

• Las aplicaciones del germanio se ven limitadas por su elevado costo y en muchos casos se investiga su sustitución por materiales más económicos.

• Fibra óptica.• Electrónica: radares y amplificadores de guitarras eléctricas usados por músicos nostálgicos del sonido de la

primera época del rock and roll; aleaciones SiGe en circuitos integrados de alta velocidad. También se utilizan compuestos sandwich Si/Ge para aumentar la movilidad de los electrones en el silicio (streched silicon).

• Óptica de infrarrojos: Espectroscopios, sistemas de visión nocturna y otros equipos.• Lentes, con alto índice de refracción, de ángulo ancho y para microscopios.• En joyería se usa la aleación Au con 12% de germanio.• Como elemento endurecedor del aluminio, magnesio y estaño.• Quimioterapia.• El tetracloruro de germanio es un ácido de Lewis y se usa como catalizador en la síntesis de polímeros (PET)

Page 16: Solidos cristalinos by MAV

Bibliografia

• http://elementos.org.es/germanio

• https://es.wikipedia.org/wiki/Germanio

• https://es.wikipedia.org/wiki/Silicio

• http://www.lenntech.es/periodica/elementos/si.htm

• http://es.wikipedia.org/wiki/Galio

• http://docsetools.com/articulos-para-saber-mas/article_48608.html

Page 17: Solidos cristalinos by MAV

© 2015 Miguel Angel Vargas