SINAPSIS

33
SINAPSIS

description

SINAPSIS. ¿Qué libera la vesícula sináptica? ¿Cómo recibe al mensajero la neurona postsináptica?. - PowerPoint PPT Presentation

Transcript of SINAPSIS

Page 1: SINAPSIS

SINAPSIS

Page 2: SINAPSIS
Page 3: SINAPSIS
Page 4: SINAPSIS

¿Qué libera la vesícula sináptica?¿Cómo recibe al mensajero la neurona postsináptica?

Page 5: SINAPSIS

Dos clasesdereceptores para los NT A. Receptores inotrópicos. Receptores que unen el NT y ellos mismos son

un canal iónico. B. Receptores metabotrópicos. Receptores que unen el NT y através de ProteinasG (proteinas que unen GTP) regulan actividad de canales ionicos

Page 6: SINAPSIS

Receptores inotrópicos. Receptor nicotínico de ACh-Son diferentes de los canales voltaje-dependientesdel Na y del K:

canal grande que permite el paso de ambos Na y Ka favor de gradiente.

Page 7: SINAPSIS

• Neurotransmision mediada por segundos mensajeros-Diseño:

• ligando-receptor –transductor (proteinaG) -efector primario (adenilciclasa) mensajero secundario (AMPc) -efector secundario- proteinkisana-respuesta celular

Page 8: SINAPSIS

• Efectode lafosforilaciónde proteinas

• A. Proteinkinasa fosforila las proteinas de un canal de K-apertura canal –paso de K –propagación del potencial sináptico (respuestaenminutos)

• B. Proteinkinasa fosforila proteinas de transcripcion (reguladoras) regulación de expresión genica (reprimiendo y/o expresando genes). Respuesta tardía y sostenida en el tiempo.

Page 9: SINAPSIS

Neurotransmisores: derivados de aminoácidos y neuropéptidos. Receptores: Neurotransmisión y neuromodulación

• 1. Sinápsisquímica implica: • a.síntesis del neurotransmisor; • b.liberacióndelneurotransmisor; • c.interacción NT-receptor; • d.remoción del NT.

• 2.Conceptode NT:• Sustancia liberada en la sinapsis por una neurona y que afecta a otra célula

de una manera especifica. Principio de Dale-Ecclesactualizado:una neurona hace uso de la misma combinaciónde mensajeros quimicos entodas sus terminaciones sinapticas.

• El sistema nervioso utiliza dos clases de mensajeros químicos: • a. moléculas pequeñas • b. neuropéptidos.

Page 10: SINAPSIS

• Schematic representation of the life cycle of a classical neurotransmitter. After accumulation of a precursor amino acid into the neuron (1), the amino acid precursor is metabolized sequentially (2) to yield the mature transmitter. The transmitter is then accumulated into vesicles by the vesicular transporter (3), where it is poised for release and protected from degradation. Once released, the transmitter can interact with postsynaptic receptors (4) orautoreceptors(5) that regulate transmitter release, synthesis, or firing rate. Transmitter actions are terminated by means of a high-affinity membrane transporter (6) that is usually associated with the neuron that released the transmitter. Alternatively,tranmitteractions may be terminated by diffusion from the active sites (7) or accumulation into glia through a membrane transporter (8). When the transmitter is taken up by the neuron, it is subject to metabolic inactivation (9).

Page 11: SINAPSIS
Page 12: SINAPSIS
Page 13: SINAPSIS
Page 14: SINAPSIS
Page 15: SINAPSIS
Page 16: SINAPSIS
Page 17: SINAPSIS
Page 18: SINAPSIS
Page 19: SINAPSIS
Page 20: SINAPSIS
Page 21: SINAPSIS
Page 22: SINAPSIS

Sinapsis Noradrenergica

Page 23: SINAPSIS

Sinapsis noradrenergicaCharacteristics of a norepinephrine (NE)-containing catecholamineneuron. Tyrosine (Tyr) is accumulated by the neuron and is then metabolized sequentially by tyrosine hydroxylase (TH) and L-aromatic aminoacid decarboxylase (L-AADC) to dopamine (DA). The DA is then taken up through the vesicular monoamine transporter into vesicles. In DA neurons, this is the final step. However, in this NE-containing cell, DA is metabolized to NE by dopamine-b-hydroxylase (DBH), which is found in the vesicle. Once NE is released, it can interact with postsynaptic noradrenergic receptors or presynaptic noradrenergic autoreceptors. The accumulation of NE by the high-affinity membrane NE transporter (NET) terminates the actions of NE. Once taken back up by the neuron, NE can be metabolized to inactive compounds (DHPG) by degradative enzymes such as monoamineoxidase (MAO) or taken back up by the vesicle.

Page 24: SINAPSIS

Sinapsis Seroninergica

Page 25: SINAPSIS

Sinapsis serotoninergicaAminas derivada de triptofamo (indolaminas-Serotonina(SER), melatonina-Serotoninatriptófano+triptofano hidroxilasa--> 5-Hidroxi triptofano***5-Hidroxi triptofano decarboxilasa--> 5-HT (SER) Serotonergic neuron. Tryptophan(Trp) in the neuron is metabolized sequentially bytryptophan hydroxylase (TrypOHase) and L-AADC to yield serotonin (5-HT). 5-HT is accumulated by the vesicular monoamine transporter. When released, 5-HT can interact with both postsynaptic receptors andpresynaptic autoreceptors. 5-HT is taken up by the high-affinity 5-HT transporter (SERT), and once inside the neuron it can be reaccumulated by vesicular transporter or inactivated metabolica

Page 26: SINAPSIS

Acetilocolina

Page 27: SINAPSIS

Production of acetylcholine

Breakdown of acetylcholine

(acetylcholinesterase)

(choline acetyltransferase)

Page 28: SINAPSIS

Sinapsis colinergica• Acetylcholine (ACh) synthesis,

release, and termination of action are shown. Acholinetransporter accumulatescholine. The enzymecholine acetyltransferase(ChAT) acetylates thecholineusing acetyl-CoA(Ac-CoA) to form the transmitterACh, which is accumulated into vesicles by the vesicular transporter. The releasedAChmay interact with postsynapticmuscarinicor nicotiniccholinergicreceptors or can be taken up into the neuron by acholinetransporter. Acetylcholine can be degraded after release by the enzyme acetylcholine esterase (AChE).

Page 29: SINAPSIS
Page 30: SINAPSIS

Alpha-Ketoglutarate

Glutamate

GABA

Glutamic acid decarboxylase (GAD)

GABA-oxoglutarate transaminase (GABA-T)

Sinapsis Gabaérgica

Page 31: SINAPSIS
Page 32: SINAPSIS
Page 33: SINAPSIS

F I N