Separadores Flash

7
OPERACIONES BÁSICAS (Notas de clase) Separadores flash Profesor Asociado Andrés Soto Agüera Curso 2003-2004

Transcript of Separadores Flash

Page 1: Separadores Flash

OPERACIONES BÁSICAS

(Notas de clase)

Separadores flash

Profesor Asociado Andrés Soto Agüera

Curso 2003-2004

Page 2: Separadores Flash

Operaciones Básicas Balances de materia y energía

Caracterización del estado de equilibrio termodinámico de un sistema

La regla de las fases establece el número de propiedades macroscópicas intensivas que

deben especificarse para establecer el estado de un sistema.

Existe un número preciso de propiedades del sistema, las cuales una vez especificadas,

definen automáticamente el estado de equilibrio y establecen el valor de las restantes

propiedades intensivas. Este número se denomina el grado de libertad termodinámico del

sistema, y depende del número de componentes químicos (especies) y del número de fases

presentes. La relación entre el grado de libertad D, el número de componentes C, y el

número de fases φ se llama la regla de las fases, que se deriva de principios

termodinámicos, y viene dada por:

2 +−= φCD

Esta ecuación, para sistemas sin reacción de un solo componente, se reduce a:

φ−= 3D

Esta ecuación indica que un componente puro puede existir en tres fases en equilibrio como

mucho, lo que sucede en un único punto llamado punto triple. Si el sistema consta de dos

fases, solo hay un grado de libertad, y por tanto se puede especificar la presión o la

temperatura, pero no ambos. En este caso las ecuaciones de estado y las curvas de

equilibrio presión-temperatura (curvas de presión de vapor para sistemas líquido-vapor)

nos permiten definir la fase del sistema con las propiedades intensivas P, T y V.

Para sistemas con múltiples componentes y dos fases, la especificación y determinación de

los estados de equilibrio resulta más complicada. En general, además de especificar T, P, o

V, se necesitan también las composiciones de las fases.

Adicionalmente, para el caso de corrientes y sistemas donde coexisten las dos fases líquido

y vapor, se precisa mayor información termodinámica, dado que las propiedades de los

componentes puros han de complementarse con los coeficientes de equilibrio (valores de

K). Cuando se trata de una corriente bifásica, la identificación de las fases y su distribución

requiere llevar a cabo cálculos de puntos de rocío y burbuja, y la determinación de las

composiciones de cada una de las fases precisa seguir un cálculo adicional: la vaporización

o “flash” isotermo.

Como se ha indicado, se supondrá en todo caso la presión especificada.

Cálculo de separadores flash

2

Page 3: Separadores Flash

Operaciones Básicas Balances de materia y energía

En la ingeniería de procesos químicos, los cálculos de separadores flash constituyen uno de

los cálculos básicos más frecuentemente empleados. Como se ha visto en el apartado

anterior, se requiere un cálculo flash para determinar el estado de cualquier corriente de

proceso que ha sufrido una transformación física o química, como ocurre cuando hay un

intercambio de calor, ya sea por un cambio de presión o un cambio de composición debido

a una reacción.

A continuación se expone el problema de cálculo de un flash, primero considerando un

modelo termodinámico ideal, que más adelante se generalizará a no-ideal, y el

procedimiento más habitual para su resolución.

Flash isotermo

Considérese un sistema con dos fases y S número de componentes. El grado de libertad

termodinámico de este sistema será

S SD =+−= 22

Con T y P especificadas, se reduce a S – 2. Así pues, si se especifican S – 2 composiciones

de la mezcla, el estado el sistema queda termodinámicamente determinado.

Sea por ejemplo el sistema mostrado en la figura. Si se toma 1 mol/hr de la corriente con

las composiciones conocidas de la mezcla zi, i = 1,….,S, a unas T y P especificadas, y se

desea calcular la distribución de la mezcla en V mol/hr de vapor de composición yi, i =

1,….,S, y L mol/hr de líquido de composición xi, i = 1,….,S. Se tienen por tanto 2 S

incógnitas. Por otro lado, hay S ecuaciones de balance de materia y S ecuaciones de

coeficientes K especificados. Por tanto, el problema está correctamente especificado.

Mezcla1 mol/hr

zi

V mol/hryi

L mol/hrxi

Vapor a T yP

Líquido a T yP

Las ecuaciones de balance son

SiLxVyz iii ,,.........1=+=

y las ecuaciones en K son

3

Page 4: Separadores Flash

Operaciones Básicas Balances de materia y energía

SixKy iii ,,.........1 ==

Para resolver el sistema, depende si utilizamos las ecuaciones de K para sustituir las

variables yi o xi, se pueden obtener dos expresiones en las ecuaciones de balance

i

iii

iii

Ky

LVKz

xLVKz

)(

)(

+=

+=

Utilizando las expresiones en xi, resolvemos para xi, y se suman éstas, obtenemos

∑∑== +

==S

i i

iS

ii LVK

zx

111

Utilizando las expresiones en yi, resolvemos para yi, y se suman éstas, obtenemos

∑∑== +

==S

i i

iiS

ii LVK

zKy

111

Si ahora restamos ambas ecuaciones, siguiendo el método de resolución conocido como

criterio de Rachford - Rice, se obtiene

01

=+

−∑=

S

i i

iii

LVKzKz

Como además L = 1- V, ya que hemos tomado como base de cálculo la corriente de entrada

F = 1 mol/hr, resulta

0)1(1

)1(1

=−+

−∑=

S

i i

ii

KVKz

La única incógnita en esta ecuación es el flujo de vapor V, y por tanto su solución da V, que

tendrá un valor entre 0 y 1, y con V se determina L = 1 – V. Con ello, se calculan xi de la

correspondiente expresión y se obtienen yi de las ecuaciones en K.

Como se puede apreciar, cuando S > 2 la ecuación anterior es no-lineal en V. La no-

linealidad viene introducida por las relaciones en K. Nótese además que como V está

basada en una alimentación unitaria, puede considerarse como una relación de flujo, es

decir moles de vapor por mol de alimentación.

Cálculo de flash con balance de energía

La generalización de lo expuesto anteriormente, permite concluir que, para un separador de

fases con múltiples componentes, como el representado anteriormente, y puesto que la

identificación completa de cada corriente requiere S+2 variables, que se reducen a S+1

variables asumiendo conocida la presión y las fases asociadas, para el balance de materia y

4

Page 5: Separadores Flash

Operaciones Básicas Balances de materia y energía

energía conjunto se tendrá un total de 3 (S+1) variables de las corrientes, más el término de

intercambio de calor dQ/dt (y el de trabajo si procede).

El número de ecuaciones de balance de materia dependerá del tipo de balance empleado

(especies o elementos), y sólo habrá un balance de energía. Asumiendo que las

especificaciones son suficientes para llegar a un grado de libertad igual a cero, el problema

puede resolverse como balance acoplado o desacoplado. Si no hay especificaciones que

relacionen el balance de energía con las variables del balance de materia, los sub-

problemas de balance de materia y energía pueden resolverse por separado. En otro caso, se

precisará la resolución conjunta.

Finalmente, el sub-problema de balance de energía requerirá normalmente iteración si una

de las temperaturas de las corrientes es desconocida; el sub-problema de balance de materia

requerirá iteración sólo si se impone una especificación no-lineal.

Se plantea a continuación un problema de flash con cálculo del balance de energía

(adjunto).

Este ejemplo confirma el hecho que la especificación de los valores de flujos de las

especies, así como T y P, son suficientes para fijar el resto de las propiedades de las

corrientes, es decir los flujos de las fases, sus composiciones, y su entalpía. Naturalmente,

se puede seleccionar otro conjunto de variables independientes. Por ejemplo, si se

especifica la presión y la fracción de vapor, se puede utilizar el modelo de cálculo de flash,

en este caso con iteración, para calcular la temperatura.

Si, en vez de especificar la temperatura de salida del flash, como en el ejemplo adjunto, se

utiliza la especificación dQ/dt=0, caso de flash adiabático, ya que cambiamos una

especificación por otra parece que el grado de libertad queda inalterado, el problema está

correctamente especificado, y los balances pueden ser desacoplados. Sin embargo, no es el

caso, ya que al no conocerse la temperatura de salida las constantes K no pueden calcularse

(dependen sólo de T en el modelo ideal), y el balance de materia queda infra-especificado

en uno.

La resolución en este caso debe abordarse suponiendo T, que es preferible estimar

inicialmente como una temperatura que esté en el rango de la coexistencia de dos fases,

entre las de rocío y burbuja, y resolver con ella el flash para obtener los flujos de las fases.

Dados estos flujos, se resuelve el balance de energía para obtener T, que se compara con el

valor inicialmente supuesto. Claramente, se necesita un cálculo iterativo, para lo cual se

puede utilizar el método de sustitución sucesiva, o mejor el de Wegstein. Frecuentemente,

5

Page 6: Separadores Flash

Operaciones Básicas Balances de materia y energía

sobre todo cuando la mezcla tiene un estrecho rango entre el punto de rocío y burbuja, se

presentan problemas de convergencia. Cuando esto suceda, debe usarse alguno de los

métodos de resolución simultánea de las ecuaciones del flash, como el de Newton o

Broyden (1978).

Generalización a sistemas no ideales

Lo expuesto anteriormente se ha restringido a sistemas ideales donde las constantes de

equilibrio sólo dependen de la temperatura, y se calculan mediante las presiones de vapor

de los componentes. Sin embargo la adopción de un modelo de equilibrio de fases no-lineal

trae la complicación añadida de que las relaciones de equilibrio dependen también de la

composición. El modelo de flash generalizado, viene dado en ese caso por las ecuaciones

siguientes:

),,(),,(0

,........,1),(

),(),(

,........,1,........,1

0

PTxLHPTyVHQFHxy

LVF

SiPTy

PTfTxK

SixKySiLxVyFz

lvf

ii

i

ii

iii

iii

+=+

=−

+=

==

===+=

∑∑

i

φγ

Dependiendo de las especificaciones del problema, el proceso de cálculo tendrá mayor o

menor complejidad, tal y como también sucede en el modelo ideal. Pero dadas las no-

linealidades inherentes al modelo, es necesario seguir un procedimiento iterativo, por lo

que se recomienda la utilización de la programación por ordenador.

También será necesario en este caso disponer de un acceso a banco de datos

termodinámicos (fugacidades, coeficientes de actividad, etc.).

La simulación en Aspen o Hysys, una vez que se tiene un primer cálculo simplificado del

flash, está especialmente recomendada.

6

Page 7: Separadores Flash

Operaciones Básicas Balances de materia y energía

7

123456789

10111213141516

17

1819202122232425262728293031323334353637383940414243

A B C D E F G H I J K LCálculo de un flash binario (modelo ideal) con balance de energía

Tabla de grados de libertadBalance materia Balance comb.

Variables corr Flujos 6 6T 0 3

Variable sist. dQ/dt 0 1Ec. balance materia 2 2

energía 0 1Especificac. compos. 1 1

coef.K 2 2T 0 3

Base cálculo 1 1Grados de libertad 0 0

Base cálculo alim. mol/hr = 1,0Condiciones aliment. AlimentaciónT(oK) Busqu.objet. 2,307E-05 Condiciones del flashP alim (kPa) Punto burbuja (kPa) 552,03 T(oK)V'/F 0, Punto de rocío (kPa) 54,4 P flash (kPa)A la presión especificada es mezcla líq-vap Busqu.objet. 0,00 V/F 0

componente n-Octano n-Hexadecano Presiones de vapor con ec. Antoine componente n-Octano n-HexadecanoPsat

i (kPa) 904,99 22,57 ln P (kPa)=A - B / ( T(K) + C) Psati (kPa) 904,985 22,572

Ki 1,81 0,05 A B C Ki 2,262 0,0561-Ki -0,81 0,95 1-Ki -1,262 0,944zi zi

Di - Di -0 0Función Objetivo ΣDi = 0 0,00 Usar solver para conseguir un valor de 0 Función Objetivo ΣDi = 0 0,0001

yi 0,98 0,02 en la función objetivo, ajustando V/F yi 0,9676 0,0324xi 0,54 0,46 xi 0,4277 0,5723

Balance de energía Calores de vaporización a 500 K J/moln-Octano

n-Hexadec.

Tomando como referencia de estado la fase líquida de la alimentación y despreciando las difer.de presión

dQ / dt = 4.828,9 J/hr por mol/hr de alimentaciónCalor positivo a transferir al flash para mantener los 500 K

60% n-C840% n-C16

500 K5 bar

V mol/hr 500 K yi 4 bar

L mol/hr 500 K xi 4 bar

dQ / dt

)5,500()5,500()4,500()4,500( '' barKHLbarKHVbarKLHbarKVHdTdQ

LVLV −−+=

∆+∆−

∆+∆= )500(2,0209,0)500(1,9791,0')500(2,324,0)500(1,9676,0 KVLHKVLHVKVLHKVLHV

dTdQ

∑ =i

ii

Ppz

1

1=∑ Ppz

i

i

0)1(1

)1(1

=−+

−∑=

S

i i

ii

KVKz

500500 500135 400

,319

n-Octano 14,2368 3304,16 -55,22780,60 0,40 n-Hexadecano 14,1586 4205,32 -119,1482 0,60 0,400,44 0,44 ,540 ,540

24.826,057.534,3