Semiconductores

20

Click here to load reader

description

PEDRO VELASQUEZ

Transcript of Semiconductores

Page 1: Semiconductores

SEMICONDUCTORES

PEDRO VELASQUEZ HURTADO

INGENIERÍA DE SISTEMAS E INFORMÁTICA

Page 2: Semiconductores

Semiconductor

• Es un elemento que se comporta como un conductor o como un

aislante dependiendo de diversos factores, como por ejemplo el

campo eléctrico o magnético, la presión, la radiación que le

incide, o la temperatura del ambiente en el que se encuentre. Los

elementos químicos semiconductores de la tabla periódica se

indican en la tabla adjunta.

Page 3: Semiconductores

SEMICONDUCTORES

Elemento GruposElectrones en

la última capa

Cd 12 2 e-

Al, Ga, B, In 13 3 e-

Si, C, Ge 14 4 e-

P, As, Sb 15 5 e-

Se, Te, (S) 16 6 e-

Elemento GruposElectrones en

la última capa

Cd 12 2 e-

Al, Ga, B, In 13 3 e-

Si, C, Ge 14 4 e-

P, As, Sb 15 5 e-

Se, Te, (S) 16 6 e-

Elemento GruposElectrones en

la última capa

Cd 12 2 e-

Al, Ga, B, In 13 3 e-

Si, C, Ge 14 4 e-

P, As, Sb 15 5 e-

Se, Te, (S) 16 6 e-

Page 4: Semiconductores

Semiconductores intrínsecos

• Es un cristal de silicio o germanio que forma una estructura tetraédrica similar a

la del carbono mediante enlaces covalentes entre sus átomos, en la figura

representados en el plano por simplicidad. Cuando el cristal se encuentra a

temperatura ambiente algunos electrones pueden absorber la energía necesaria

para saltar a la banda de conducción dejando el correspondiente hueco en la

banda de valencia (1). Las energías requeridas, a temperatura ambiente, son de

1,12 eV y 0,67 eV para el silicio y el germanio respectivamente.

Page 5: Semiconductores

• Obviamente el proceso inverso también se produce, de modo que los electrones

pueden caer, desde el estado energético correspondiente a la banda de conducción,

a un hueco en la banda de valencia liberando energía. A este fenómeno se le

denomina recombinación. Sucede que, a una determinada temperatura, las

velocidades de creación de pares e-h, y de recombinación se igualan, de modo que la

concentración global de electrones y huecos permanece constante. Siendo "n" la

concentración de electrones (cargas negativas) y "p" la concentración de huecos

(cargas positivas), se cumple que:

• ni = n = p

Page 6: Semiconductores

• siendo ni la concentración intrínseca del semiconductor, función exclusiva de la temperatura y

del tipo de elemento.

• Ejemplos de valores de ni a temperatura ambiente (27 ºC):

• ni(Si) = 1.5 1010cm-3

• ni(Ge) = 2.4 1013cm-3

• Los electrones y los huecos reciben el nombre de portadores. En los semiconductores, ambos

tipos de portadores contribuyen al paso de la corriente eléctrica. Si se somete el cristal a una

diferencia de potencial se producen dos corrientes eléctricas. Por un lado la debida al

movimiento de los electrones libres de la banda de conducción, y por otro, la debida al

desplazamiento de los electrones en la banda de valencia, que tenderán a saltar a los huecos

próximos (2), originando una corriente de huecos con 4 capas ideales y en la dirección

contraria al campo eléctrico cuya velocidad y magnitud es muy inferior a la de la banda de

conducción.

Page 7: Semiconductores

GRÁFICOS INTRÍNSECOS

Page 8: Semiconductores
Page 9: Semiconductores

semiconductores dopados

• En la producción de semiconductores, se denomina dopaje alproceso intencional de agregar impurezas en un semiconductorextremadamente puro (también referido como intrínseco) con elfin de cambiar sus propiedades eléctricas. Las impurezasutilizadas dependen del tipo de semiconductores a dopar. A lossemiconductores con dopajes ligeros y moderados se los conocecomo extrínsecos. Un semiconductor altamente dopado, que actúamás como un conductor que como un semiconductor, es llamadodegenerado.

Page 10: Semiconductores

• El número de átomos dopantes necesitados para crear unadiferencia en las capacidades conductoras de un semiconductor esmuy pequeña. Cuando se agregan un pequeño número de átomosdopantes (en el orden de 1 cada 100.000.000 de átomos) entoncesse dice que el dopaje es bajo o ligero. Cuando se agregan muchosmás átomos (en el orden de 1 cada 10.000 átomos) entonces sedice que el dopaje es alto o pesado. Este dopaje pesado serepresenta con la nomenclatura N+ para material de tipo N, o P+para material de tipo P.

Page 12: Semiconductores

Tipos de materiales dopantes

• Tipo N

• Se llama material tipo N al que posee átomos de impurezas que permiten la aparición de

electrones sin huecos asociados a los mismos semiconductores. Los átomos de este tipo

se llaman donantes ya que "donan" o entregan electrones. Suelen ser de valencia cinco,

como el Arsénico y el Fósforo. De esta forma, no se ha desbalanceado la neutralidad

eléctrica, ya que el átomo introducido al semiconductor es neutro, pero posee un

electrón no ligado, a diferencia de los átomos que conforman la estructura original, por

lo que la energía necesaria para separarlo del átomo será menor que la necesitada para

romper una ligadura en el cristal de silicio (o del semiconductor original). Finalmente,

existirán más electrones que huecos, por lo que los primeros serán los portadores

mayoritarios y los últimos los minoritarios. La cantidad de portadores mayoritarios será

función directa de la cantidad de átomos de impurezas introducidos.

Page 13: Semiconductores

• El siguiente es un ejemplo de dopaje de Silicio por el Fósforo (dopaje N).En el caso del Fósforo, se dona un electrón.

Dopaje de tipo N

Page 14: Semiconductores

• Tipo P

• Se llama así al material que tiene átomos de impurezas que permiten laformación de huecos sin que aparezcan electrones asociados a los mismos, comoocurre al romperse una ligadura. Los átomos de este tipo se llaman aceptores, yaque "aceptan" o toman un electrón. Suelen ser de valencia tres, como elAluminio, el Indio o el Galio. Nuevamente, el átomo introducido es neutro, por loque no modificará la neutralidad eléctrica del cristal, pero debido a que solotiene tres electrones en su última capa de valencia, aparecerá una ligadura rota,que tenderá a tomar electrones de los átomos próximos, generando finalmentemás huecos que electrones, por lo que los primeros serán los portadoresmayoritarios y los segundos los minoritarios. Al igual que en el material tipo N, lacantidad de portadores mayoritarios será función directa de la cantidad deátomos de impurezas introducidos.

Page 15: Semiconductores

• El siguiente es un ejemplo de dopaje de Silicio por el Boro (P dopaje). En el caso del boro le falta un electrón y, por tanto, es donado un hueco de electrón.

Page 16: Semiconductores

• Dopaje en conductores orgánicos

• Artículo principal: Polímero conductor

• Los polímeros conductores pueden ser dopados al agregar reactivos químicos que oxiden (o algunas veces

reduzcan) el sistema, para ceder electrones a las órbitas conductoras dentro de un sistema potencialmente

conductor.

• Existen dos formas principales de dopar un polímero conductor, ambas mediante un proceso de reducción-

oxidación. En el primer método, dopado químico, se expone un polímero, como la melanina (típicamente una

película delgada), a un oxidante (típicamente yodo o bromo) o a un agente reductor (típicamente se utilizan

metales alcalinos, aunque esta exposición es bastante menos común). El segundo método es el dopaje

electroquímico, en la cual un electrodo de trabajo, revestido con un polímero, es suspendido en una solución

electrolítica, en la cual el polímero es insoluble, junto al electrodo opuesto, separados ambos. Se crea una

diferencia de potencial eléctrico entre los electrodos, la cual hace que una carga (y su correspondiente ion del

electrolito) entren en el polímero en la forma de electrones agregados (dopaje tipo N) o salgan del polímero

(dopaje tipo P), según la polarización utilizada.

Page 17: Semiconductores

• La razón por la cual el dopaje tipo N es mucho menos común esque la atmósfera de la tierra, la cual es rica en oxígeno, crea unambiente oxidante. Un polímero tipo N rico en electronesreaccionaría inmediatamente con el oxígeno ambiental y sedesdoparía (o reoxidaría) nuevamente el polímero, volviendo a suestado natural.

Page 18: Semiconductores
Page 19: Semiconductores

BIBLIOGRAFÍA

• Boylestad, R. y Nashelsky, L. (2009). Electrónica: teoría de circuitos y dispositivos electrónicos. 8ª ed. México: Prentice Hall. ISBN: 9788420529998Capitulo 1 Diodos Semiconductores

• Malvino, A. (2007). Principios de electrónica. (7ª Ed.) McGraw Hill. (ISBN: 9788448156190)Capitulo 1 Introducción

Page 20: Semiconductores

OTRAS FUENTES:

• http://grupos.unican.es/dyvci/ruizrg/html.files/LibroWeb.html

• http://www.smps.us/tools.html

• http://www.pdfoo.com/pdf-336/electronic-circuit.html

• http://zone.ni.com/devzone/cda/tut/p/id/5573

• http://zone.ni.com/devzone/cda/tut/p/id/7829

• http://openbookproject.net/electricCircuits/index.htm

• http://openbookproject.net/electricCircuits/Semi/index.html

• http://grupos.unican.es/dyvci/ruizrg/html.files/LibroWeb.html