Presentacion parte1b Agua - Conceptos_Generales.pdf

download Presentacion parte1b Agua - Conceptos_Generales.pdf

of 14

Transcript of Presentacion parte1b Agua - Conceptos_Generales.pdf

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    1/14

    1

    Material de Estudio

    Curso: Qumica de AlimentosAvanzadaCdigo: 745012

    Escuela de Ingeniera de Alimentos

    Posgrado en Ingeniera de Alimentos

    Harold Acosta Z., MSc., Ph.D.[[email protected]]

    Grupos de Investigacin:

    Seguridad Alimentaria, Innovacin y Competitividad [SEGALINNCO]Investigador asociado del Grupo de Investigacin en Calidad y Productividad en las

    Organizaciones [GICPO]

    Miembro del Instituto Colombiano de la Panificacin y los Cereales, Medelln

    Water-Solute Interactions

    Macroscopic Level (Water Binding,Hydration, and Water HoldingCapacity)

    Molecular Level: Bound Water:

    equilibrium water content atappropriate T and low relative

    humidity.

    Conceptos generales

    Fuerzas de estabilidad

    Sistemas coloidales hidroflicos:

    Estabilidad por hidratacin [agua atrada hacia la superficie de las partculas formanbarrera que impide el contacto entre estas].Estabilidad de partculas hidrfobas:

    Doble capa elctrica [partculas suspendidas en agua tienen carga elctrica(generalmente negativa) que atrae iones de carga opuesta. Forma capa de iones decarga contraria (contraiones) que se mantienen por fuerzas electrostticas].

    Superficie negativa, cationes en solucinatrados; al aumentar distancia desde lapartcula, atraccin disminuye, generandocapa difusa de iones en solucin.

    Potencial electrosttico disminuyeexponencialmente desde la superficie de lapartcula hasta cero, cuando concentracionesde cationes y aniones son iguales.

    Espesor de la capa doble muy pequeo vs.dimetro de la partcula (10-8 m).

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    2/14

    2

    Fuerzas de inestabilidad

    Movimiento browniano:

    Partculas de dimetros de 10-6 m o menos en agua, en constante movimientorpido, desordenado y al azar. Fuente de energa: colisiones de partculas conagua y T, puede contribuir a la estabilidad, pero probable contacto conpartculas en agregados mayores que dependern de la desestabilizacinelectrosttica. Colisiones entre partculas favorecidas por gradienteshidrulicos, mezclando o creando turbulencia. Despreciable cuando aumentael tamao de partcula.

    Fuerzas de London- Van derWaals:

    Fuerza atmica cohesiva entre tomos. Radio de accin muy reducido. Encoloides se amplia hasta dimensiones comparables con el coloide. Si larepulsin se reduce para permitir contactos entre s , habr adhesin departculas y aglomeracin progresiva (floculacin). La coagulacin (y posteriorfloculacin) de coloides en el agua se logra antes que el potencial Z se reduzcaa cero, ya que este valor oscila entre -5 y -10 mV.

    Instability: Water - Nonpolar Solute Interactions

    Water non-polar molecules Thermodynamically unfavorable - decrease in entropy Formation of a rigid ice-like clathrate at interface Dipole induced dipole Hydrophobic interactions - association of apolar and

    nonpolar groups in aqueous environments

    Amphiphilic

    molecules

    Co-existence at

    molecular level

    Physical Properties of Water and Ice

    Phase transition properties

    Melting point at 101.3 k Pa (1 atm) 0.000CBoiling point at 101.3 k Pa (1 atm) 100.000CCritical temperature 373.99CCritical pressure 22.064 MPa (218.6 atm)

    Triple point 0.01C and 611.73 Pa (4.589 mm Hg )Enthalpy of fus ion at 0C 6.012 kJ (1 .436 kcal)/molEnthalpy of vaporization at 100C 40.657 kJ (9.711 kcal)/molEnthalpy of sublimination at 0C 50.91 kJ (12.16 kcal)/mol

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    3/14

    3

    Unit cell of ordinary ice at 0C. Circles represent oxygens of water molecules.Nearest neighbor internuclear O-O distance is 2.76 ; is 109.

    Physical Properties of Ice

    Extended structure of ordinary ice. Oxygen atoms shown. Open and shaded circles,respectively, represent oxygen atoms in upper and lower layers of a basal plane

    Physical Properties of Ice

    Conceptos generales

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    4/14

    4

    Agua Ligada: existe en la vecindad de solutos y otros constituyentes no-

    acuosos; exhibe movilidad reducida y sus propiedades difieren significati-vamente de la masa de agua en el mismo sistema y no congela a -40C

    Agua de Constitucin: parte integral de constituyentes no-acuosos* < 0.03% del aguatotal* Regionesintersticiales de proteinas;hidratosqumicos

    Agua Vicinal: interacciona fuertemente con sitios hidroflicos especficos pormedio de asociaciones agua-ion y agua-dipolo

    * 0.5 0.4 % del agua total* Optimizala estabilidad global de laMonocapa

    Agua Multicapa: ocupa lossitios remanentes despus de la primera capa yforma varias capas alrededor de grupos hidroflicos por medio de enlaces dehidrgeno w-w y w-s

    * 3 2 % delaguatotal* Las velocidades de reaccin aumentan

    Agua en los alimentos

    Water Activity (aW)

    Relationship between water content and perishability Various foods with the same water content differ significantly in perishability

    - Water content alone is not reliable Importance of water associations with non-aqueous constituents to support

    deteriorative activities Rates of deteriorative changes and microbial growth at normal food storage

    conditions often depend on water content and aW.

    Water activity is defined as the ratio of the vapor pressure of water in amaterial (p) to the vapor pressure of pure water (po) at the same T.

    The water activity (aW): ratio of the water vapor pressure of the food tothe water vapor pressure of pure water under the same conditions

    aW =f / fo = p / po = ERH (%) / 100

    n1 moles de solvente (agua) y n2 moles de soluto

    Thermodynamic principle [pure water (aw = 1.0), std. state]. In the equilibrium:

    Presin de vapor

    Isoterma de

    adsorcin y

    desorcin

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    5/14

    5

    Efecto de la temperatura sobre aw

    Estructura de

    los alimentos

    aw Temperature Dependence

    Clausius-Clapeyron equation

    P is the vapor pressure

    P0 is a vapor pressure at a known temperature T0,

    H is the heat of sorption (KJ/mol)

    R is the ideal gas law constant, 8.2x10-3

    T is thetemperature (in Kelvin).

    Sorption Isotherms

    Plots interrelating water content of a food with its water activity at constant T The curve is established using a microclimate method

    Gas-tight jars where RH is fixed with saturated salt solutions Usefulness

    Concentration and Dehydration processesease or difficulty of water removal

    Assessing stability (shelf-life) of the food Prevent caking and sticking of food powders Determine moisture barrier properties of packaging materials Formulation of food mixtures

    Equilibration process

    need pure salt solutions problem of volatile contamination large surface area to food must be slurry- need excess salt mixed type samples takes time 7 to 21 days vacuum fluxing toxicity of salts - eg lithium, nitrite, iodide, bromide

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    6/14

    6

    Zones of

    moisture

    Moisture adsorption isotherms

    at different storage temperatures

    At any given EMC, aw increases with increasing temperature

    Humedad base hmeda, HbhHumedad base seca, Hbsmw, masa del aguams, masa de la materia secamt, masa total

    Presiones parciales del vapor de agua

    en el aire Pv y en la superficie del grano Pvg

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    7/14

    7

    Isotermas de sorcin de agua del maz

    Fenmenos

    de adsorcin y

    de desorcin

    Calculating the Monolayer

    Limitation - only use up to 0.55 maximum

    BET Monolayer DeterminationLimit between Zones I & II

    Water molecules are bonded to the product by strong H-bonds

    Higher Stability Brunauer, Emmett and Teller (BET) method

    m = water content (dry basis)

    mo = water content at monolayer

    c = constant related to heat adsorption

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    8/14

    8

    GAB isotherm equation

    Model equations for calculating isotherms

    aw and Growth of Microorganisms

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    9/14

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    10/14

    10

    Predicting Food Spoilage

    Controlling aw in foods

    Limitations

    on awlowering

    Mtodos para reducir aw

    Congelacin Secado/deshidratacin Adicin de solutos

    Sal (NaCl, KCl, fosfatos) Azcares (sacarosa, glucosa, fructosa, maltosa, lactosa) Polialcoholes (sorbitol, glicerina, manitol, propilen glicol) cidos (fosfrico, ctrico, ascrbico,fumrico) Hidrolizados de protena Aminocidos (alanina, glicina)

    Alimentos de

    humedad

    Intermedia

    [IMF]

    Alimentos autoestables Contenido de agua de 25-50%

    aw de 0.65 a 0.86 Evitar el desarrollo de bacterias

    (Staphylococcus aureus) Levaduras mohos pueden crecer

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    11/14

    11

    Estabilidad de los alimentos

    Fru to s cl im atri cos Frutos n o cli matri cos

    Albaricoque

    Melocotn

    Manzana

    Pera

    Aguacate (solo madura

    fuera de la planta)

    Pltano

    Nectarina

    MangoChirimoya

    Ciruela

    Sanda

    Tomate

    Kivis

    Higos(segn la variedad)

    Meln (segnla variedad)

    Uva

    Cereza

    Fresa

    Pia

    Naranja

    Limn

    Pomelo

    Pepino

    MelnHigo

    Litchi

    Estabilidad de los alimentos - frutas

    Estabilidad de los alimentos - secado

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    12/14

    12

    Estabilidad de los alimentos - secado

    Estabilidad de los alimentos - liofilizacin

    Estabilidad de los alimentos - liofilizacin

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    13/14

    13

    Maximal freeze concentration, no solute crystallization, constant pressure, no time dependenc e.Tm

    is the melting point curve, TE is the eutectic point, TmS is the solubility curve. Tg is the glass

    transition curve, and Tg is the solute-specific g lass transition temperature of a maximally freeze

    concentrated solution. Heavy dashed lines represent conditions of metastable equilibrium. Allother lines represent conditions of equilibrium.

    State

    Diagram

    Binary

    System

    Another view of a State Diagram

    Influencia

    de aw y delpH en la

    estabilidad

    de los

    alimentos

  • 8/12/2019 Presentacion parte1b Agua - Conceptos_Generales.pdf

    14/14

    The moisture in food has a direct influence on its weight, and weight of materialis related to its value in dollars.

    If the weight of fr uit in a packing house decreases by 5% due to moisture lost tothe air, the owner has lost 5% of his product, which is 5% of gross income.

    Moisture in fruit has significant monetary value. Moisture in any food has thesame value as the going unit price of the food. For example, if apples are sellingfor $2.00 per kg and part of the weight is lost in storage due to low humidity air,the lost water has the value of $2.00 per kg!o For every 1,000 kg of $2.00/kg product shipped having 5% moisture loss, the

    owner will be paid $100 less than the cost of the product that was placedinto storage.

    o Minimizing weight loss is important in maintaining amount of product aswell as its quality.

    Money value of moisture in foods

    Moisture has a tendency to move from a location of higher concentration to a region oflower concentration. More specifically, moisture in the air at a high vapor pressure will gotowards a location of lower vapor pressure. This movement of moisture is a naturalphenomenon, commonly occurring in foods, and has numerous ramifications.

    Fruit left open to room air will quickly dry, lose moisture, and eventually becomeinedible.

    Preventing or restricting the movement of moisture is a major objective of the wrappingmaterials business.

    Foods are wrapped with plastics to prevent the exchange of moisture. Foods are coveredwith plastic wraps before being heated in the oven to retain moisture in the food.

    The availability and variety of packaging materials has grown significantly since the1980s. Materials, primarily plastics, have been developed with unique moisture and gastransmitting properties to meet the defined food requirements (Fellows, 1988).

    Water movementand need for

    specific packaging

    The electrical properties of biological materials have long beenutilized for rapid, non-destructive measurement of moisturecontent. The moisture in agricultural grains is routinely sa mpledfor making decisions about drying, storing, a nd marketing.

    Moisture content can be measured rapidly, with low costelectronic sensors, as food products flow through processingoperations. For these reasons, moisture is the primary qualityfactor used in the agricultural grain trade. Electrical conductanceand resistance of water differs significantly from dry matter sothat property can be utilized in determining moisture in foodmaterials (Figure 2.10). Knowledge of these properties providesfor rapid assessment of current quality and storage potential in amodern marketing system.

    Dielectric properties of food materials are utilized in microwave heating. Homemicrowave ovens became so popular in the 1980s that now most U.S. homes use themfor thawing, heating, and cooking food. Home microwave ovens use the 2450 MHZfrequency. Industrial usage of microwave ovens has not been as widespread. Microwaveheating results from absorption of electromagnetic waves. Absorption of microwaveenergy depends primarily on the composition of the material. Water and high moisturefoods are excellent absorbers of microwave energy while dry materials and ice are poorabsorbers. Microwave heating, therefore, works best to heat unfrozen foods of highmoisture. Microwave differs from convection heating where heat must move from theoutside inward. Microwave energy can penetrate deeply into the product, although theintensity of this energy decreases with depth. For example, when heating raw potatoesat 2450 MHz, half the total energy is absorbed by the first 0.93 cm of depth (Table 2.04).Despite this depletion of energy, heating occurs rapidly at all locations in a productexposed to microwave energy. This heating may not be uniform throughout due tospatial variation in material properties and in the microwave radiation. The interaction ofthe food material and the microwave heat source makes it even more i mportant to knowthe dielectric properties of the food. Table 2.04 lists dielectric properties of selected foodproducts and related materials.

    Water dielectric

    properties &

    microwaving