Movimiento de proyectil

9
1 MOVIMIENTO DE PROYECTILES OBJETIVOS 1. Demostrar la trayectoria de un objeto al ser lanzado con un ángulo de inclinación. 2. Obtener experimentalmente la rapidez de lanzamiento de un proyectil 3. Declarar lo que es una muestra y una población 4. Calcular la media, desviación estándar y el error cuadrático medio. Teoría Un proyectil es cualquier cuerpo que recibe una velocidad inicial y luego sigue una trayectoria determinada totalmente por los efectos de la aceleración gravitacional y la resistencia del aire. Una pelota bateada, un balón lanzado, un paquete soltado desde un avión y una bala disparada de un rifle son todos proyectiles. El camino que sigue un proyectil es su trayectoria. Para analizar este tipo de movimiento tan común, partiremos de un modelo idealizado que representa el proyectil como una partícula con aceleración (debida a la gravedad) constante tanto en magnitud como en dirección. Despreciaremos los efectos de la resistencia del aire, así como la curvatura y rotación terrestres. Como todos los modelos, este tiene limitaciones. La curvatura de la Tierra debe considerarse en el vuelo de misiles de largo alcance; en tanto que la resistencia del aire es de importancia vital para un paracaidista. La trayectoria curva de un proyectil es una combinación de sus movimientos horizontal y vertical. El componente horizontal de la velocidad para un proyectil es completamente independiente de la componente vertical de la velocidad, cuando la resistencia del aire es tan pequeña que se ignora. Entonces, al componente horizontal constante de la velocidad no le afecta la fuerza de gravedad vertical. Cada componente es independiente. Sus efectos combinados producen la trayectoria de los proyectiles. El movimiento de un proyectil siempre está limitado a un plano vertical determinado por la dirección de la velocidad inicial (ver figura 5.1). La razón es que la aceleración debida a la gravedad es exclusivamente vertical; la gravedad no puede mover un proyectil lateralmente. Por lo tanto, este movimiento es bidimensional. Llamaremos al plano de movimiento, el plano de coordenadas xy, con el eje x horizontal y el eje y vertical hacia arriba. La clave del análisis del movimiento de proyectiles es que podemos tratar por separado las coordenadas x y y. La componente x de la aceleración es cero, y la componente y es constante e igual a -g. (Por definición, g siempre es positiva, pero por las direcciones de coordenadas elegidas, a y es negativa.) Así, podemos analizar el movimiento de un proyectil como una combinación de movimiento horizontal con velocidad constante y movimiento vertical con aceleración constante.

Transcript of Movimiento de proyectil

Page 1: Movimiento de proyectil

1

MOVIMIENTO DE PROYECTILES

OBJETIVOS

1. Demostrar la trayectoria de un objeto al ser lanzado con un ángulo de inclinación. 2. Obtener experimentalmente la rapidez de lanzamiento de un proyectil 3. Declarar lo que es una muestra y una población 4. Calcular la media, desviación estándar y el error cuadrático medio.

Teoría

Un proyectil es cualquier cuerpo que recibe una velocidad inicial y luego sigue una trayectoria

determinada totalmente por los efectos de la aceleración gravitacional y la resistencia del aire.

Una pelota bateada, un balón lanzado, un paquete soltado desde un avión y una bala disparada de

un rifle son todos proyectiles. El camino que sigue un proyectil es su trayectoria.

Para analizar este tipo de movimiento tan común, partiremos de un modelo idealizado que

representa el proyectil como una partícula con aceleración (debida a la gravedad) constante tanto

en magnitud como en dirección. Despreciaremos los efectos de la resistencia del aire, así como la

curvatura y rotación terrestres. Como todos los modelos, este tiene limitaciones. La curvatura de

la Tierra debe considerarse en el vuelo de misiles de largo alcance; en tanto que la resistencia del

aire es de importancia vital para un paracaidista.

La trayectoria curva de un proyectil es una combinación de sus movimientos horizontal y vertical.

El componente horizontal de la velocidad para un proyectil es completamente independiente de la

componente vertical de la velocidad, cuando la resistencia del aire es tan pequeña que se ignora.

Entonces, al componente horizontal constante de la velocidad no le afecta la fuerza de gravedad

vertical. Cada componente es independiente. Sus efectos combinados producen la trayectoria de

los proyectiles.

El movimiento de un proyectil siempre está limitado a un plano vertical determinado por la

dirección de la velocidad inicial (ver figura 5.1). La razón es que la aceleración debida a la gravedad

es exclusivamente vertical; la gravedad no puede mover un proyectil lateralmente. Por lo tanto,

este movimiento es bidimensional. Llamaremos al plano de movimiento, el plano de coordenadas

xy, con el eje x horizontal y el eje y vertical hacia arriba.

La clave del análisis del movimiento de proyectiles es que podemos tratar por separado las

coordenadas x y y. La componente x de la aceleración es cero, y la componente y es constante e

igual a -g. (Por definición, g siempre es positiva, pero por las direcciones de coordenadas elegidas,

ay es negativa.) Así, podemos analizar el movimiento de un proyectil como una combinación de

movimiento horizontal con velocidad constante y movimiento vertical con aceleración constante.

Page 2: Movimiento de proyectil

2

Figura 5.1

Por lo cual considerando el sistema de coordenadas xy y despreciando la resistencia del aire , las

ecuaciones que describen la posición y velocidad de un proyectil son las siguientes.

Cuando la resistencia del aire es lo suficientemente pequeña como para no tenerla en cuenta,

como en el caso de un objeto pesado que no adquiere gran rapidez, la trayectoria es parabólica.

Caso contrario cuando la resistencia del aire no es insignificante y debe incluirse, calcular la

trayectoria se vuelve mucho más complicada; los efectos de dicha resistencia dependen de la

velocidad, por lo que la aceleración ya no es constante.

Page 3: Movimiento de proyectil

3

ESTADÍSTICA DE LA OBSERVACIÓN

La Estadística está formada por el conjunto de métodos y técnicas que permiten la obtención,

organización, síntesis, descripción e interpretación de los datos para la toma de decisiones en

ambiente de incertidumbre.

Diferencia entre muestras y población

Al conjunto que contiene a todos los elementos de iguales características y propiedades se

denomina población, por ejemplo; la población de estudiantes registrados en el laboratorio de física

A es 320, mientras que la muestra es una fracción de la población, por ejemplo; para determinar la

edad promedio de los estudiantes que toman el laboratorio de física A se escoge una muestra de 60.

En estadística se conoce como muestreo a la técnica para la selección de una muestra a partir de una

población. Recuerde los elementos de la muestra no guardan ninguna característica especial que los

diferencie de los demás elementos de una población. Al contrario, con una muestra lo que se

pretende es representar a toda la población. Podríamos decir que la muestra es una población de

tamaño reducido. Esto es una desventaja, aunque la muestra pretenda representar lo más fielmente

posible a la población, nunca dejará de ser eso, una muestra. Con los datos de la muestra solo

podremos conocer las características de esos valores muestrales, para ello se obtendrán los valores

estimados de los parámetros de la población, como a estos últimos casi nunca se los podrá conocer

con certeza, entonces a esta diferencia se conoce como error muestral. El símbolo para las medidas

de tendencia central en el tamaño de la muestra es n y para el tamaño de la población es N

Variables y Atributos

Observar una población es equivalente a observar sus elementos. Ahora bien, esos elementos

poseen una serie de características que son las que realmente se observan todas estas características

de los elementos de una población se les conoce de forma genérica como caracteres. Estos últimos,

según su naturaleza, pueden ser de tipo cuantitativo o cualitativo.

En estadística es más habitual hablar de variables que de caracteres cuantitativos y de atributos en

lugar de caracteres cualitativos. Las variables pueden medirse en términos cuantitativos y a cada

una de esas posibles mediciones o realizaciones se les conoce como valores, datos u observaciones.

A su vez, en función del número posible de valores que tome una variable, a las mismas se las

puede clasificar en discretas y continuas. Serán discretas cuando el número de valores sea finito o

infinito numerable, ejemplo, el número de alumnos registrados en física A en la ESPOL, mientras

que una variable será continua cuando el número de sus valores sea infinito no numerable, por

ejemplo, el tiempo en caída libre de un objeto desde una altura determinada.

Distribución Normal o de Gauss

La distribución normal frecuentemente es identificada en la mayoría de las mediciones físicas y por

tal motivo se le confiere especial importancia, ésta distribución puede deducirse a partir de la

hipótesis de que la desviación total de una cantidad medida x, respecto de un valor central X, es la

resultante de una gran cantidad de pequeñas fluctuaciones que ocurren al azar, la curva que

representa esta distribución tiene la forma de una campana como se muestra en la gráfica en donde

Page 4: Movimiento de proyectil

4

se relaciona la distribución de Gauss y las mediciones reales. La función matemática que representa

a la campana de Gauss viene dada por

22 )( XxhCey

Donde C es una medida de la altura de la campana, observe que la curva es simétrica alrededor de la

media (X = 38.3) y tiende a cero asintóticamente. Mientras que h determina la amplitud de la curva,

si h es grande, la campana es angosta y alta, si h es pequeña, la campana es ancha y baja, la relación

entre h y la desviación estándar viene dada por

h2

1

Ahora daremos una interpretación a la desviación estándar en términos de probabilidad, así tenemos

que el área bajo la curva que se extiende desde menos infinito a más infinito es igual a 1. Para una

desviación alrededor de X ( X ) el área bajo la curva corresponde al 68% del total, esto quiere

decir que, 68 de cada 100 muestras tomadas de una población, dan la confianza de que cada una de

ellas contengan la mejor estimación de la media, esto se conoce como un intervalo de confianza.

Mientras que dentro del intervalo de confianza 2X la probabilidad es del 95%

Page 5: Movimiento de proyectil

5

La media es un valor promedio del conjunto de observación , su símbolo correspondiente para

muestra es y está definido como:

La moda corresponde al valor de la variable donde está la máxima frecuencia, o sea, que en un

histograma la moda corresponde al valor de la variable donde hay un pico o máximo. Si una

distribución tiene dos máximos la denominamos distribución bimodal, y si tiene tres máximos

trimodal y así sucesivamente.

La mediana es el valor de la variable que separa los datos entre aquellos que definen el primero

50% de los valores de los de la segunda mitad. O sea que la mitad de los datos de la población o

muestra están arriba de la mediana y la otra mitad están abajo de la misma.

Para estimar la mediana tenemos que observar la lista de datos ordenados de menor a mayor, y

ubicar el valor central de la lista. Si el número de datos es impar, la mediana corresponde

precisamente al valor central. Si el numero N de datos es par, la mediana se estima como

En una distribución dada, una línea vertical trazada desde la mediana divide a la distribución en dos

partes de área equivalentes.

Varianza

La varianza es la media aritmética del cuadrado de las desviaciones respecto a la media de una

distribución estadística. El símbolo para la varianza en población se representa por 2

y para la

muestra es

;

Page 6: Movimiento de proyectil

6

Desviación estándar

El símbolo para la desviación estándar en una muestra es (S), la desviación estándar mide cuánto se

separan los datos. La fórmula es la raíz cuadrada de la varianza.

La desviación típica de la media es también conocida como error cuadrático medio (SEM) se

calcula así:

Page 7: Movimiento de proyectil

7

Procedimiento de la práctica

1. Registre la altura h desde la posición de la esfera con respecto al piso 2. En el equipo de movimiento de proyectiles existe tres puntos de lanzamiento de rapidez

fije en la mitad (Consulte al profesor encargado). 3. Coloque la esfera en el tubo del proyectil, proceda a disparar y observe el alcance

máximo de la trayectoria. 4. Proceda a colocar papel bond-papel carbón en la posición donde la esfera impacto. 5. Vuelva a colocar la esfera en el equipo y dispare. Luego mida con la regla el alcance

máximo de la esfera. 6. Reporte sus mediciones en la hoja de reporte. 7. Realice 6 observaciones para diferentes ángulos tal como se muestra en la tabla del

reporte.

Pregunta prueba de entrada

1. Cuáles son las variables de mediciones directas e indirectas 2. Cuál es el objetivo de la práctica 3. Una esfera se lanza con una rapidez desconocida a un ángulo θ desde una mesa con

altura h obteniendo una alcance máximo X. ¿Proceda a deducir la ecuación de la trayectoria de la esfera y exprese la rapidez desconocida Vo ~ en función de (h, X, θ)?

Page 8: Movimiento de proyectil

8

REPORTE DE DATOS Y RESULTADOS

Práctica Movimiento de Proyectiles Fecha_________ Paralelo____ P.Entrada ____

Apellidos_____________________ Nombres____________________ Desempeño en clase ____

Informe Técnico ____

P.Sálida ____

Total ____

Objetivos de la práctica

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

1.-Para la práctica encuentre una ecuación de la rapidez inicial Vo solo en función de la altura

h, alcance X y del ángulo θ es decir Vo ~ (h, X, θ); cuando una esfera es lanzada desde la

mesa de trabajo.

2.-Durante cada observación registre los datos en la siguiente tabla y luego con la ecuación del

inciso uno calcule la rapidez Vo (m/s)

Obs Alcance X (m) h (m) Vo(m/s)

1 10

2 20

3 30

4 40

5 50

6 55

Page 9: Movimiento de proyectil

9

3.-Considerando los datos de la rapidez inicial de la tabla anterior proceda a calcular la media,

varianza, desviación estándar y el SEM. (Use el espacio en blanco para mostrar los cálculos

realizados en la práctica)

Media ( ) m/s Varianza Desviación estándar SEM ( m/s (