Gestion de Mantenimento

50
CAPITULO IV La Gestión Económica de Mantenimiento Ingeniero:Mario Valencia Salas Universidad Católica de Santa Maria

description

Asistido por computador

Transcript of Gestion de Mantenimento

Page 1: Gestion de Mantenimento

CAPITULO IV

La Gestión Económica de Mantenimiento

Ingeniero:Mario Valencia Salas

Universidad Católica de Santa Maria

Page 2: Gestion de Mantenimento

4.1.-OBJETIVOS

Obtener la ecuación de funcionamiento de una maquina

Obtener la confiabilidad en función del tiempo

Obtener los parámetros de la vida característica de la maquina.

Realizar el programa de mantenimiento para la maquina

Page 3: Gestion de Mantenimento

4.2.- GENERALIDADES :

MODELOS ESTADISTICOS

- De “ Weibull”

- Mil – HDBK-217

- Bellcore (Telcordia) Tr- 332

- PRISMA

- CNET RDF

Page 4: Gestion de Mantenimento

4.3.- FUNCION WEIBULL:

Aplicable a maquinas que se encuentran en cualquiera de sus etapas de su vida.

a).- FUNCION WEIBULL:

Βeta (β): Identifica la etapa del ciclo de vida de la maquina

β < Periodo de infancia.β = Periodo de vida útil.β > Periodo de desgaste.

Page 5: Gestion de Mantenimento

Gama (γ ): Parámetro de vida mínima o de garantía.

Εta (η): Es constante de tiempo que denota edad de fallas.

Siempre se cumple: t > γ η > 0 β > 0

b).- CONFIABILIDAD ( R(t) ):

R(t) = e- (--------)t - γ

η

β

Page 6: Gestion de Mantenimento

PARÁMETROS DE ECUACIÓN DE WEIBULL

Beta (β): Esta constante adimensional denota en que ciclo de vida se encuentra la máquina, sea infancia, vida útil o vejez.

Eta (η): Es una constante de tiempo que denota la edad de la falla, es decir, el tiempo donde se manifestó la falla más trascendente en un ciclo de vida determinado.

Gamma (γ): Constante de tiempo mínimo de falla, tiempo libre de falla o tiempo de garantía, es el lapso de tiempo donde la máquina no tiende a fallar o que tiene una probabilidad de fallas relativamente baja.

Tiempo: Es la variable independiente, es decir, es el lapso de tiempo específico al que hallamos su respectiva confiabilidad en la máquina.

Page 7: Gestion de Mantenimento

C).- FRECUENCIA DE FALLAS ( Z(t) ):

Z(t) = -------βη

(--------)t - γ

η

β-1

tiempo

Z(t)

β = 1

β < 1 β > 1

Page 8: Gestion de Mantenimento

(h)

(%)

Fig. Efectos del parámetro en hoja de Weibull

Page 9: Gestion de Mantenimento

Fig: Efectos del parámetro η en la hoja Weibull para fallas por desgaste en la vejez de la maquina

Page 10: Gestion de Mantenimento

Fig: Efectos del parámetro γ en la hoja de Weibull

Page 11: Gestion de Mantenimento

Camión Minero Cat 785C

Page 12: Gestion de Mantenimento

1.- HISTORIAL DE MÁQUINA: MANDOS FINALES

Es el conjunto de datos tomados en todo el tiempo de vida de la máquina del mando final HD024028-UT del camión minero 785C-HTO13, de la compañía minera Yanacocha S.A, se ha seleccionado este historial debido a que este camión es el más crítico en cuanto a rendimiento, es decir ofreció menor rendimiento en función a su tiempo de vida útil y la gran cantidad de fallas que se produjeron.

Page 13: Gestion de Mantenimento

Tabla: Historial de Mando Final HD024028-UT

CÓDIGO COMPONENTE

Número de

elementos averiados

Horas de operación

(horómetro del componente)

710619 Rodamiento de piñón de ataque

1 403

70-117 Rodamiento de la corona 2 521

HE-780 Empaque de la carcaza 3 844

175588 Pernos de embrague 4 1230

754086 Rodamiento de semieje de entrada

5 1890

ST203 Freno de semieje de salida 6 2500

1987T3 Pernos de sujeción de carcaza

7 2800

4435118 Rodamiento de portaplanetarios

8 3500

Page 14: Gestion de Mantenimento

PASOS PARA EL ANÁLISIS DEL COMPORTAMIENTO DE LA MÁQUINA

El siguiente procedimiento consta de 10 pasos, se realizará todo el procedimiento de mandos finales, variando en las magnitudes de los datos de historial de máquina.

PASO 1: CÁLCULO DEL MTBF EN MANDO FINALES

El tiempo medio entre fallas (MTBF) es el promedio de tiempos efectivos de una máquina o componente, es decir libre de tiempos muertos producidos por inspecciones preventivas, ajustes y reparaciones menores en función al comportamiento cronológico de todo el componente.

Page 15: Gestion de Mantenimento

MTBF ----------------------------------------------------

Cálculo de MTBF en Mandos Finales

CÓDIGO COMPONENTE MTBF (hr)

70-117 Rodamiento de la corona 260.50

HE-780 Empaque de carcaza 281.33

175588 Pernos de embrague 307.50

754086 Rodamiento de semieje de entrada

378.00

1987T3 Pernos de sujeción de carcaza 400.00

710619 Rodamiento de piñón de ataque 403.00

ST203 Freno de semieje de salida 416.70

443S118 Rodamiento de portaplanetarios 437.50

Tiempo total de paradaNumero de partes averiadas

Tabla: Calculo de MTBF en Mando Finales

Page 16: Gestion de Mantenimento

PASO 2: CÁLCULO DE PORCENTAJE ACUMULADO, RANGO MEDIO Y MEDIANA DE PROBABILIDAD DE FALLAS PARA MANDOS FINALES

Porcentaje acumulado de probabilidad de falla D(t): Es la posibilidad de que ocurra una falla durante el funcionamiento de la máquina en un determinado tiempo, también es el cociente del número de orden de la falla registrada entre el número de fallas totales.

fallas de totalNúmero

falla la deorden de Número D(t)

Formula: Porcentaje acumulado de fallas

Page 17: Gestion de Mantenimento

Rango medio de la probabilidad de falla (Rm): Es el número de orden de la falla según horómetro entre el número total de fallas más 1, es decir, el promedio aritmético del porcentaje acumulado de fallas.

1

falla la deorden de Número Rm

N

Donde:Rm = Rango medio de fallasN = número total de fallas generadas

Formula. Rango medio en probabilidad de fallas

Page 18: Gestion de Mantenimento

Rango de la Mediana de Probabilidad de fallas F(t): Es el número de orden de la falla según horómetro menos 0.3, entre el número total de fallas más 0.4, este rango es el utilizado para calcular los parámetros en la hoja de Weibull, debido a que este rango nos muestra el valor central que es el más significante en la probabilidad de fallas, solo así podemos analizar el comportamiento de los componentes.

Donde:i= número de orden de la falla según horómetroN= número total de fallas generadas

F(t) = i - 0.3

N + 0.4

Formula: Rango de la mediana en probabilidadde fallas

Page 19: Gestion de Mantenimento

Tabla: Cálculo de porcentaje acumulado, rango medio y mediana de probabilidad de fallas para mandos finales

COMPONENTEMTBF

(hr)

PORCENTAJE ACUMULADO

(%)

RANGO MEDIO

(%)

RANGO DE

MEDIANA (%)

Rodamiento de corona 260.50 12.00 11.11 8.33

Empaque de carcaza 281.33 25.00 22.22 20.23

Pernos de embrague 307.50 37.00 33.33 32.14

Rodamiento de semieje entrado

378.00 50.00 44.44 44.04

Pernos de sujeción carcaza

400.00 62.00 55.55 55.95

Rodamiento de piñón ataque

403.00 75.00 66.66 67.85

Freno de semieje salida 416.70 87.00 77.77 79.76

Rodamiento de portaplanetarios

437.50 100.00 88.88 91.66

Porcentaje mínimo del rango medio = 11.11 %Porcentaje máximo del rango medio = 88.88 %Porcentaje mínimo del rango de la mediana = 8.33 %Porcentaje máximo del rango de la mediana = 91.66 %

Page 20: Gestion de Mantenimento

PASO 3: MODELO WEIBULL PARA DETERMINAR LA PROBABILIDAD DE FALLA CONSTANTE

Despejando la ecuación exponencial de Weibull, podemos hallar la probabilidad de fallas constante, logaritmando el factor exponencial y despejando, dándole una forma de ecuación de pendiente de primer grado.

R(t) + F(t) = 1 → R(t) = 1 - F(t) =

e (--------)

t - γη

β1

1- F(t)=

- (--------)t - γη

β

e

Ln( )11- F(t)

= (--------)t - γη

β

Ln( )Ln( ) 11- F(t)

= β Ln ( t – γ ) – β Ln η

Dicha ecuación tiene la forma: y = a.x + b

Page 21: Gestion de Mantenimento

y = Ln( )Ln( ) 11- F(t)

x = β Ln ( t – γ )

a = β

b = - β Ln η

Si t = F (t) 0.63 K

y = 0Ln 0 = ∞Ln 1 = 0

Ln( )Ln( ) 11- F(t)

= 0

Ln( ) 11- F(t)

= 1

F(t) = 1 – (1/e)

F(t) = 1 – ( 1/ 2.7182)

F(t) = 1- 0.3678

F(t) = 63.21 %

Page 22: Gestion de Mantenimento

PASO 4: OBTENCIÓN DE LA GRÁFICA DE PROBABILIDAD DE FALLAS vs. TIEMPOS MEDIOS ENTRE FALLAS

Se obtiene por medio del ploteo de datos de la probabilidad de fallas F(t) versus los MTBF calculados, posteriormente se formará una curva ascendente, en el eje X se colocarán los tiempos del menor al mayor con un máximo de dos decimales, en el eje y se colocarán los datos obtenidos del cálculo del rango de la mediana del porcentaje acumulado de fallas, es decir, el porcentaje de la probabilidad de fallas

Page 23: Gestion de Mantenimento

Tabla: Cálculo de la curva F(t) vs. MTBF en mandos finales

MTBF = (x)Rango de

mediana F(t) = y

260.50 8.3

281.33 20

307.50 32

378.00 44

400.00 55

403.00 67

416.66 79

437.50 91

Nota: Por recomendación de Weibull el antepenúltimo, penúltimoy ultimo valor de mediana se redondean a su superiorsi pasan del 0.5

Page 24: Gestion de Mantenimento

DIAGRAMA 1: PLOTEO DE F(t) vs. MTBF EN HOJA DE WEIBULL: Mandos finales

..

80

68

55

44

32

20

8.3

92

0

10

20

30

40

50

60

70

80

90

100

100 200 261 281 308 378 400 403 417 438

MTBF

Ran

go d

e m

edia

na R

(t)

MTBF

Page 25: Gestion de Mantenimento

DIAGRAMA LINEALIDAD DE GRÁFICA F(t) vs. MTBF: Mandos Finales

Page 26: Gestion de Mantenimento

..

80

68

55

44

32

208.3

92

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

100 200 260.5 281.3 307.5 378 400 403 416.7 437.5

MTBF

Ra

ng

o d

e m

ed

ian

a R

(t)

MTBF Línea de tendencia

63.21

Diagrama Grafico de F(t) Constante: Mandos Finales

Page 27: Gestion de Mantenimento

PASO 5: OBTENCIÓN DEL PARÁMETRO ETA (η)

Este parámetro simboliza la vida característica de edad de falla, es una constante que denota el periodo de operación durante el cual al menos el 63.21 % de los equipos se espera que falle, esto tipifica y explica que los valores de fallas anteriores no son trascendentes en función a toda la vida de la máquina o componente, a partir de ese valor comienza el cambio acelerado en las características vitales del componente o máquina, es decir, ofrece un decremento en cuanto a su confiabilidad y garantía.

Obtenemos el valor proyectando una línea horizontal desde la probabilidad de falla F(t), hasta MTBF y desde ese punto se proyecta una línea perpendicular a la primera hecha hasta intersecar con el eje de coordenadas de MTBF.

Page 28: Gestion de Mantenimento

DIAGRAMA 4 OBTENCIÓN DE η mandos finales

..

80

68

55

44

32

208.3

92

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

100 200 260.5 281.3 307.5 378 400 403 416.7 437.5

MTBF

Ra

ng

o d

e m

ed

ian

a R

(t)

MTBF Línea de tendencia

63.21

η

Page 29: Gestion de Mantenimento

PASO 6: OBTENCIÓN DEL PARÁMETRO BETA (β)

Después de determinar el parámetro (η) se proyecta una línea recta entre el primer y último punto de la curva, dicha línea con un determinado ángulo se trasladará, en la misma inclinación al punto de la probabilidad de falla, es decir en el eje de F(t), dando una escala de 0 al 7 a la parte superior del diagrama según el procedimiento de realización de modelo matemático de Weibull en MS Excel.

Valores del parametro β (Beta)

El parametro β es una constante adimensional de forma, es decir, es el valor de la pendiente de la recta de F(t) vs. MTBF, graficada y linealizada automáticamente por el programa MS Excel, nos permite identificar el que ciclo de vida se encuentra la máquina o componente.

Page 30: Gestion de Mantenimento

Tabla: Valores del parámetro de forma ( ), en función al tiempo de garantía (γ)

β γ γ γ

β<1

Etapa de niñez del componente, falla por rotura, margen de seguridad bajo

γ>0Equipo

intrínsecamente confiable

β=1

Etapa de vida útil del componente, falla aleatoria o pseudoaleatoria

γ ≈1 Equipo ideal

β>1Etapa de vejez del componente, falla

por desgaste

Page 31: Gestion de Mantenimento

DIAGRAMA: OBTENCIÓN DE (β) : Mandos Finales

..

80

68

55

44

32

208.3

92

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

100 200 260.5 281.33 307.5 378 400 403 416.66 437.5

MTBFMTBF Línea de tendencia

63.21

=402.5

7 3.5 1 0.5 0

3.49

Ra

ng

o

de

la

m e

dia n

a

F(t

)

Ym = 3.49X – 20.93

Page 32: Gestion de Mantenimento

PASO 7: OBTENCIÓN DE LA ECUACION DEL COMPORTAMIENTO DE LA MÁQUINA

Finalmente después de obtener el F(t) constante, el (η) y el (β), se le da forma a la ecuación (y), reemplazando los valores anteriores en la ecuación madre que es constante para analizar cualquier elemento de la máquina en estudio.

Ecuación para componente: Mandos Finalesa =

a = 3.49

b = -3.49 (Ln (402.5))

y = ax + b

y = 3.49X – 20.93

Page 33: Gestion de Mantenimento

PARÁMETROS OBTENIDOS DE LA HOJA DE WEIBULL

Son los resultados ploteados a escala por el programa MS Excel, reemplazando el antiguo método del ábaco de kao, (método de ploteo manual) muy ineficiente al dar la tendencia de linealidad.

Mandos finales

β = 3.49

η = 402.5

* Etapa de vejez en el componente, falla por desgaste, vejez prematura debido a que el desgaste se produjo en el rodamiento de piñón de ataque 710619, por inadecuados procedimientos preventivos, replantear hojas de PM’s .

Tabla: Parámetros obtenidos según hoja grafica de Weibull

Page 34: Gestion de Mantenimento

PASO 8: GRAFICAR LOS VALORES X y Y DE LA ECUACIÓN DADA PARA LOS COMPONENTES.

Estas gráficas nos indican únicamente el comportamiento de la ecuación, es decir, con los valores máximos y mínimos que le podamos dar.

Page 35: Gestion de Mantenimento

Tabla: Confiabilidad y probabilidad de fallas para mandos finales: y = 3.49x – 20.93

t(hr)

xLn (t)

y Ln.Ln (1/(1-F(t)))

F(t) (%)1-1/eey

R(t) (%)100-F(t)

1 0 -20.93 0.000000081 99.999999919

2.71 1 -17.44 0.000002666 99.999997334

7.38 2 -13.95 0.0000874159 99.9999125841

20.08 3 -10.46 0.0028659819 99.9971340181

54.59 4 -6.97 0.0939211572 99.9060788428

100 5 -3.48 3.033 96.967

402.26 5.99 -0.0000588 63.21 36.79

403.42 6 0.01 63.57 36.43

1092.42 7 3.50 100 0

2980.95 8 6.99 100.23 -0.77

8103.08 9 10.48 100.58 -0.42

22026.46 10 13.97 100.95 -0.05

Los datos válidos para el modelo matemático según historial de la máquina está entre 100 hr hasta 403.42 hr, lo que demuestra que t (valores muy similares según la escala), 402.26 hr 402.50 hr.

Page 36: Gestion de Mantenimento

DIAGRAMA TENDENCIA DE LA CURVA EN LA ECUACIÓN: Mandos finales

-0.0000588

-20.93

-17.44

-13.95

-10.46

-6.97

-3.48

0.01 3.5

6.99

10.48

13.97

-25

-20

-15

-10

-5

0

5

10

15

20

0 1 2 3 4 5 5.99 6 7 8 9 10

Ln t

Ln.L

n(1/

(1-F

(t))

)

y

Page 37: Gestion de Mantenimento

PASO 9: GRAFICAR F(t) vs. TIEMPO EFECTIVO DE OPERACIÓN

Se grafican los valores del tiempo en el eje de coordenadas X y el porcentaje de frecuencia de fallas en el eje Y, es ahí, donde podemos obtener la gráfica de la ecuación de la máquina con valores lógicos.

Page 38: Gestion de Mantenimento

Tabla: Tiempo y probabilidad de fallas para mandos finales: = 402.50 hr = 3.5 t = 402.26 hr y = 3.49x –20.93

t(hr) x y F(t) () R(t) ()

100 4.60 -4.85 0.77 99.22

150 5.010 -3.44 3.15 96.84

200 5.298 -2.43 8.42 91.57

250 5.521 -1.66 17.31 82.68

300 5.703 -1.02 30.27 69.72

350 5.857 -0.4858 45.94 54.05

400 5.990 -0.0197 62.48 37.51

402.26 5.992 -0.0000588 63.21 36.79

403.42 6.00 0.01 63.57 36.43

500 6.21 0.75 87.96 12.03

600 6.39 1.39 98.19 1.80

700 6.55 1.93 99.89 0.10

1092.42 7.00 3.50 100.00 0.00

Estos son los verdaderos valores para analizar el comportamiento de los mandos finales, se han añadido valores dentro de los rangos de operatividad lógicos.

Page 39: Gestion de Mantenimento

DIAGRAMA Gráfica de tiempo vs probabilidad de Fallas: Mandos finales

45.94

62.48

8.42

17.31

30.27

0.77 3.15

100

99.89

98.1987.96

63.57

63.21

0

20

40

60

80

100

120

100 150 200 250 300 350 400 402.3 403.4 500 600 700 1092

t (hr)

F(t

) %

F(t)

Podemos apreciar que la curva de tendencia de los valores forma una comba hacia el eje del tiempo, es decir, una curva convexa dicho el eje, visualizada desde el primer hasta el último punto de la gráfica.

Page 40: Gestion de Mantenimento

PASO 10: OBTENCIÓN DEL PARÁMETRO GAMMA (γ)

Este es el parámetro de vida mínima, es decir, es el parámetro de garantía, libre de fallas en donde la probabilidad de falla es insignificante; este parámetro que esta cuantificado en horas es mayor igual a cero y es menor igual a la edad de la falla, es decir, menor igual que ), se obtiene a partir de tanteos en la recta de linealidad en la gráfica de la ecuación característica de la máquina, cuando los valores de salen negativos se descartan, (no existen tiempos negativos).

Page 41: Gestion de Mantenimento

)12()23(

)12)(23(

tttt

tttt

)12()23(

)12)(23(

tttt

tttt

Donde:t1: tiempo inicial

t2: tiempo sucesivo al inicial o intermedio

t3: tercer tiempo sucesivo al intermedio

Parámetro para gamma (γ): para curva cóncava

γ =

Parámetro para gamma (γ): para curva cónvexsa

γ =

Page 42: Gestion de Mantenimento

t1 = 350 hrt2 = 400 hr t3 = 403 hr

)350400()400403(

)350400)(400403(

DIAGRAMA 11 Parámetro de garantía: Mandos Finales

45.94

62.48

63.21

30.27

17.318.42

58.8

0

20

40

60

80

100

120

140

160

180

200

200 250 300 350 387.7 400 402.26

t (hr)

F(t

) %

F(t) Exponencial (F(t))

La tendencia de la curva convexa en dirección del eje del tiempo (t) es una curva convexa hacia el eje del tiempo.

Parámetro γ para grafica de mandos finales – curva convexa

γ = γ = 387.79 hr

Page 43: Gestion de Mantenimento

CONCLUSIONES DEL ANÁLISIS PARA MANDOS FINALES:

= 3.5 (vejez en el componente) = 402.50 hr = 16.79 días = 17 días

t = 402.26 hr

Desgaste prematuro malos procedimientos de ensamblaje, ineficientes hojas en el PM90 o falla por

diseño (repuestos Cat de Ferreyros a Caterpillar- Tucson Arizona).

El = 3.49 (>1) este componente se encuentra en la etapa de vejez de la máquina, =402.50 hr

Page 44: Gestion de Mantenimento

Este componente deberá ser reemplazado y programar un nuevo plan de mantenimiento preventivo a las 500 horas, a ese determinado número de horas le corresponde la falla en rodamiento de piñón de ataque 710619 (falla por desgaste), el parámetro de vida mínima o garantía () es de 388 horas (16 días).

El componente dejará de ser confiable R(t) = 0 % a las 1092.42 horas( 45 días de funcionamiento).

Page 45: Gestion de Mantenimento
Page 46: Gestion de Mantenimento

1.5. MANTENIMIENTO BASADO EN LA CONFIABILIDAD (RCM)

El Mantenimiento Basado en la Confiabilidad R.C.M, (Reliability Centred Maintenance) es también llamado en el idioma castellano

Mantenimiento Centrado en Confiabilidad (M.C.C) fue desarrollado en un principio por la industria de la aviación comercial de los

Estados Unidos, en cooperación con entidades gubernamentales como la NASA y privadas como la Boeing (constructor de aviones), desde

1974, el Departamento de Defensa de los Estados Unidos, ha usado el MCC o RCM, como la filosofía de mantenimiento de sus sistemas militares aéreos. El éxito del MCC en el sector de la aviación ha hecho que otros sectores tales como el de generación de energía

(plantas nucleares y centrales termoeléctricas), empresas petroleras, químicas, empresas extractoras de gas, fundiciones y la industria de manufactura, se interesen en implantar esta filosofía de gestión del

mantenimiento, adecuándola a sus necesidades de operaciones.

Page 47: Gestion de Mantenimento

El concepto más adecuado para el Mantenimiento Basado en la Confiabilidad es el conjunto de procedimientos planificados y programados dedicados a la confiabilidad de los equipos, es decir, la confiabilidad es la probabilidad de funcionamiento de una máquina en condiciones operativas definidas.El RCM 2, es la evolución en su segunda versión, que se basa en el análisis de falla y en el análisis del comportamiento de los equipos mediante el modelo matemático de Weibull, este tipo de mantenimiento renovado ha sido patentado y se vende como paquete de instalación a las empresas interesadas en obtenerlo e implementarlo.

Page 48: Gestion de Mantenimento
Page 49: Gestion de Mantenimento
Page 50: Gestion de Mantenimento