Geotécnia e Ingeniería Sísmica aplicadas a la Minería

73
Departamento de Ingeniería del Terreno, Cartográfica y Geofísica UNIVERSITAT POLITÈCNICA DE CATALUNYA Instituto de Investigaciones Antisísmicas “Ing Aldo Bruschi” UNIVERSIDAD NACIONAL DE SAN JUAN Laboratorio de Geotecnia UNIVERSIDAD NACIONAL DE CÓRDOBA Geotécnia e Ingeniería Sísmica aplicadas a la Minería San Juan, Argentina, 16 de Octubre de 2007

Transcript of Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Page 1: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Departamento de Ingeniería del Terreno, Cartográfica y Geofísica

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Instituto de Investigaciones Antisísmicas “Ing Aldo Bruschi”

UNIVERSIDAD NACIONAL DESAN JUAN

Laboratorio de GeotecniaUNIVERSIDAD NACIONAL DE

CÓRDOBA

Geotécnia e Ingeniería Sísmica aplicadas a la MineríaSan Juan, Argentina, 16 de Octubre de 2007

Page 2: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

1

FORMULATION FOR FORMULATION FOR THERMO HYDRO MECHANICALTHERMO HYDRO MECHANICALPROBLEMS IN POROUS MEDIAPROBLEMS IN POROUS MEDIA

Sebastià OlivellaEscuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos

Departamento de Ingeniería del Terreno (UPC)

Jornada Geotecnia e Ingeniería Sísmica, San Juan, 16 de octubre 2007

Page 3: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

2

Índice

1. PROBLEMAS ACOPLADOS2. FORMULACION BASICA 3. ALGUNOS EJEMPLOS

Page 4: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

3

PROBLEMAS ACOPLADOSMechanical problemsin soils and rocks

Page 5: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

4

Mechanical problemsin soils and rocksOne phase flow

PROBLEMAS ACOPLADOS

Page 6: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

5

Mechanical problemsin soils and rocksOne phase flowTwo phase flow

PROBLEMAS ACOPLADOS

Page 7: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

6

Mechanical problemsin soils and rocks

Saturated consolidation/unsaturated consolidation

One phase flowTwo phase flow

PROBLEMAS ACOPLADOS

Page 8: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

7

Mechanical problemsin soils and rocks

Saturated consolidation/unsaturated consolidation

One phase flow

Evaporation/evapotranspirationWaste disposalsGeothermal fluid extraction

Two phase flow

PROBLEMAS ACOPLADOS

Page 9: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

8

Mechanical problemsin soils and rocks

Saturated consolidation/unsaturated consolidation

One phase flow

Evaporation/evapotranspirationWaste disposalsGeothermal fluid extraction

Solute transportproblems

Two phase flow

CODE_BRIGHT

PROBLEMAS ACOPLADOS

Page 10: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

9

2. BASIC FORMULATIONGas phase: dry air + water vapour

Solid phase

Liquid phase: water + dissolved air

The three phases are:• solid phase (s) :mineral• liquid phase (l) :water + air

dissolved • gas phase (g) :mixture of

dry air and water vapour

The three species are: • Solid (-): the mineral is

coincident with solid phase • Water (w):as liquid or

evaporated in the gas phase

• Air (a) :dry air, as gas or dissolved in the liquid phase

Page 11: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

10

Solid phaseVs / V = 1 - φ

Liquid phaseVl / V = Vl / Vh × Vh / V =

Sl × φ

Unsaturated soil: Porosity and degree of Saturation

Total volumeV = Vs +Vl +Vg = Vs + Vh

Gas phaseVg / V = Vg / Vh × Vh / V

= Sg × φ

Page 12: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

11

Mass of Solid in the Solid phase

Mass of water in the liquid phase

Unsaturated soil: Mass in phases

wl lω ρ

wg gω ρ

Mass of water in the gas phase

Mass of water in the liquid phase

Mass of air in the gas phase

ag gω ρ

al lω ρ

Page 13: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

12

Mass of Solid in the Solid phase

Mass of water in the liquid phase

Unsaturated soil: Mass in porous medium

wl l gSω ρ φ

wg g gSω ρ φ

Mass of water in the gas phase

( )1sρ − φ

Mass of water in the liquid phase

Mass of air in the gas phaseag g gSω ρ φ

al l lSω ρ φ

Page 14: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

13

Liquid

Gas

Solid

Heat in Heat out

Water in

Vapour flux (diffusion)

Heat flux (conduction and advection)

Waterevaporation

Water condensation

Liquid flux (advection)

Heat flux(conduction and advection)

Heat flux (conduction)

Page 15: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

14

TemperatureWater content

Water fluxes

Page 16: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

15

ωgwρg qg

φSgωgwρg du/dt

igw

igwωgwρg qgφSgωg

wρg du/dt

the advective flux caused by solid motion: φSg ωg

wρg du/dt where du/dt is the vector of solid velocities, Sg is the volumetric fraction of pores occupied by the gas phase and φ is porosity.

the advective flux caused by fluid motion: ωg

wρg qg, where qg is the Darcy's flux,

the nonadvective flux: igw, i.e.

diffusive/ dispersive,

THE TOTAL MASS FLUX OF A SPECIES IN A PHASE (E.G. FLUX OF AIR PRESENT IN GAS PHASE jGW IS, IN GENERAL, THE SUM

OF THREE TERMS

Page 17: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

16

mass or energy per fluxes of mass unit volume of porous media or energy

sources or sinks ofmass and energy

t⎛ ⎞ ⎛ ⎞∂

+∇• =⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎛ ⎞

= ⎜ ⎟⎝ ⎠

The following balance equation will be applied

Mass in Mass out(∆ Mass)

Page 18: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

17

( )( ) ( )1 0 s st∂

ρ − φ + ∇ ⋅ =∂

j

MASS BALANCE OF SOLID

Mass balance of solid:

( )( ) ( )1 1 0 s sd

t dt∂ ⎛ ⎞ρ − φ + ∇ ⋅ ρ − φ =⎜ ⎟∂ ⎝ ⎠

u

ρs solid density and js is the flux of solid.

( )1 1 (1 ) s s s

s

D D dDt Dt dt

⎡ ⎤φ ρ= −φ + −φ ∇ ⋅⎢ ⎥ρ ⎣ ⎦

u

Porosity variation:

Page 19: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

18

Volumetric strain: y yx d ddd

dt dt dt dtε εε

∇ ⋅ = + +u

( ) (1 1 1 ) s s s

s

ddt

Dt Dt

DD

⎡ ⎤ρ− φ⎢ ⎥ρ ⎣

φ− φ ∇ ⋅+

⎦=

u

Page 20: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

19

( ) ( ) w w condensation wl l l lS f f

t∂

ω ρ φ + ∇ ⋅ = +∂

j

MASS BALANCE OF WATER

Water is present in liquid an gas phases. The mass balance of water in the liquid and in the gas phase is expressed as:

( ) ( ) w w evaporation wg g g gS f f

t∂

ω ρ φ + ∇ ⋅ = +∂

j

f w is an external supply of water and:

f condensation + f evaporation = 0Adding the two mass balance equations leads to:

( ) ( ) w w w w wl l l g g g l gS S f

t∂

ω ρ φ + ω ρ φ + ∇ ⋅ + =∂

j j

Page 21: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

20

Flux referred to a fixed framework: jg

w= igw + ωg

wρg qg + φSgωgwρg du/dt = j'g

w + φSgωgwρg du/dt

Flux referred to the solid skeleton: j'g

w= igw + ωg

wρg qg

( ) ( ) w w w w wl l l g g g l gS S f

t∂

ω ρ φ + ω ρ φ + ∇ ⋅ + =∂

j j

Page 22: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

21

The use of the material derivative leads to:

( ) ( )

( )( ) ( )' '

w ws l l l g g g w w s

l l l g g g

w w w w wl l l g g g l g

D S S DS SDt Dt

dS S fdt

ω ρ +ω ρ+ ω ρ +ω ρ +

+ ω ρ +ω ρ ∇⋅ +∇ ⋅ +

φφ

=φu j j

Porosity appears in this equation as:•a coefficient in storage terms•in a term involving its variation caused by different processes•hidden in variables that depend on porosity (e.g. intrinsic permeability).

Page 23: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

22

Porosity from solid balance leads to:

( ) ( )

( )( ) ( )

1

' '

w ws l l l g g g w w

l l l g g gs

w w w w wl l l g g g l

s s

g

D DDt

S SS S

Dt

S St

fdd

ρω ρ +ω ρ −φ+ ω ρ +ω ρ +

ρ

+ ω ρ +ω ρ +∇⋅ + =

φ

∇ ⋅ j ju

For incompressible solid:

( ) ( )

( )( )

' '

w ws l l l g g g w w

l g

w w wl l l g g g

D S SDt

dS S fdt

ω ρ + ω ρφ + ∇ ⋅ + =

= − ω ρ + ω ρ ∇ ⋅ +

j j

u

Page 24: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

23

Foundation in a saturated soil

Pore pressure

Displacement

Page 25: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

24

( ) ( ) a a dissolution al l l lS f f

t∂

ω ρ φ + ∇ ⋅ = +∂

j

MASS BALANCE OF AIR

( ) ( ) a a liberation ag g g gS f f

t∂

ω ρ φ + ∇ ⋅ = +∂

j

where f a is an external supply of air and the internal source terms that represent phase change are:

f dissolution + f liberation = 0Adding the two equations leads to:

( ) ( ) a a a a al l l g g g l gS S f

t∂

ω ρ φ+ ω ρ φ +∇ ⋅ + =∂

j j

An internal production term is not present because the total mass balance inside the medium is considered in this equation.

Page 26: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

25

∇ ⋅ + =σ b 0

MOMENTUM BALANCE FOR THE MEDIUM

Momentum balance = equilibrium of stresses (inertial terms neglected)

where σ is the stress tensor and b is the vector of body forces.

Page 27: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

26

( )( )1 ( ) Qs s l l l g g g c es el ege e S e S f

t∂

ρ −φ + ρ φ+ ρ φ +∇⋅ + + + =∂

i j j j

INTERNAL ENERGY BALANCE FOR THE MEDIUM

Internal energy balance for the porous medium (es, el, eg):

• ic is energy flux: conduction through the porous medium•(jes, jel, jeg) are advective fluxes of energy caused by mass motions • f Q is an internal/external energy supply.

Advective heat fluxes due to mass movement

Page 28: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

27

The internal energy in each phase can be calculated as a function of internal energy of each component.

( )w w a a w w a ag g g g g g g g g g g g g

w w a ag g g g g

e e e e e

e e e

ρ = ω ρ + ω ρ = ω + ω ρ

= ω + ω

Following this decomposition, the advective fluxes of energy in each phase are calculated as:

wg g g

wg g g

ag g g

wg

ag

w a

w w a ag g g g g

w w wg g g

a a ag g g

w wg

a a w ag g g g g g g g g

a

gg

g g

g

g

d

e e

e e

e e

e e e e e

Sdt

dSdt

dSdt

ω ρ

ω ρ

= +

⎛ ⎞= + +⎜ ⎟⎝ ⎠⎛ ⎞= + +⎜ ⎟⎝ ⎠

⎛ ⎞= + = +

ω ρ φ

ω ρ

+ ρ +⎜ ⎟

φ

⎝ ⎠φ

q

q

q

j j

i

i

i i

j

j

j

u

u

uj j j

Page 29: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

28

SOLID

GAS LIQUID

FINAL SET OF BALANCE EQUATIONS

MASS BALANCE OF WATER. Unknown: Pl

( ) ( ) wwg

wlgg

wgll

wl fSS

t=+⋅∇+φρω+φρω

∂∂ jj

MASS BALANCE OF AIR. Unknown: Pg

INTERNAL ENERGY BALANCE FOR THE MEDIUM. Unknown: T

( )( )1 ( ) Qs s l l l g g g c Es El EgE E S E S f

t∂

ρ −φ + ρ φ+ ρ φ +∇⋅ + + + =∂

i j j j

∇⋅ + =σ b 0 MOMENTUM BALANCE FOR THE MEDIUM. Unknown: u

SPECIES MASS BALANCE (REACTIVE TRANSPORT). Unknown: c

RcSt ll =⋅∇+ρφ∂∂ j)(

( ) ( ) aag

algg

agll

al fSS

t=+⋅∇+φρω+φρω

∂∂ jj

Page 30: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

29

THM problem: Febex mock-up

SECTION A11

SECTION A9SECTION A8

SECTION A5

SECTION A2SECTION A1

SECTION A10

SECTION A7

SECTION A6

SECTION A4

SECTION A3

SECTION AB

Page 31: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

30

THM problem: Febex mock-up

Heater A Heater B

Zone A Zone B

0 200 400 600 800 1000 1200 1400Time (day)

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e H

umid

ity (%

)

0 200 400 600 800 1000 1200 1400Time (day)

10

20

30

40

50

60

70

80

90

100

Rel

ativ

e H

umid

ity (%

)

Page 32: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

31

THM problem: Febex mock-up

Heater A Heater B

Zone A Zone B

0 200 400 600 800 1000 1200 1400Time (day)

0

1

2

3

4

5

6

7

8

9

10

11

12

Nor

mal

Str

ess

(MPa

)

0 200 400 600 800 1000 1200 1400Time (day)

0

1

2

3

4

5

6

7

8

9

10

11

12

Nor

mal

Str

ess

(MPa

)

Page 33: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

32

Boundary conditions

( ) ( ) ( ) ( ) ( )( )0 00 0 0wg

w wg g g

w wg gg g gg g gP Pj j ω γ −= + +β ω − ρ ωω ρ

where the superscript ()0 stands for prescribed values.

•The first term is the mass inflow or outflow that takes place when a flow rate of gas (jg0) is prescribed.

•The second term is the mass inflow or outflow that takes place when gas phase pressure (Pg

0) is prescribed at a node. The coefficient γg is a leakage coefficient, i.e., a parameter that allows a boundary condition of the Cauchy type.

•The third term is the mass inflow or outflow that takes place when vapour mass fraction is prescribed at the boundary. This term naturally comes from the nonadvective flux (Fick's law). Mass fraction and density prescribed values are only required when inflow takes place. For outflow the values in the medium are considered.

Page 34: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

33

T(t), ρ0vap(t), I(t)

Q(t)=0.70 I(t)Q(t)=0.60 I(t)

No horizontal flows and

displacements

jwg= βg (ρ0vap - ρvap )

jwg

jwl= Q if Pl < P atm.

jwl

βg = 0.002

Pl Patm. ≤

0 1 2m

T(t), ρ0vap(t), I(t)

Q(t)=0.70 I(t)Q(t)=0.60 I(t)

No horizontal flows and

displacements

jwg= βg (ρ0vap - ρvap )

jwg

jwl= Q if Pl < P atm.

jwl

βg = 0.002

Pl Patm. ≤

0 1 2m

ROAD PAVEMENT PROBLEMS

Page 35: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

34

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Time (days/10)

Rai

n (m

m/1

0 da

ys),

Tem

p (º

C)

0,62

0,64

0,66

0,68

0,7

0,72

0,74

0,76

0,78

Rel

ativ

e hu

mid

ity

Rain (mm/(10 days))

Temperature (ºC)

Relative humidity

Page 36: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

35

Constitutive laws

Darcy ⇒ liquid and gas flow

Fick ⇒ vapor and air diffusion (dispersion)

Fourier ⇒ heat conduction

Retention curve ⇒ saturation versus suction

Water V-P-T ⇒ water density

Ideal gases law ⇒ gas density

Henry’s law ⇒ dissolved air

Psychrometric law ⇒ vapour concentration

Mechanical model ⇒ stress – strain response

Page 37: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

36

Enthalpy of water

Depending on the pressure of water (p, MPa) and the enthalpy per unit mass (h, J/kg) three regions are distinguished.From 100 oC to 180 oC, vapor pressure changes by one order of magnitude. While atmospheric pressure (0.1 MPa) is the vapor pressure at 100 oC, 1 MPa is the vapor pressure at 180 oC.

0.01

0.1

1

10

100

0.E+00 1.E+06 2.E+06 3.E+06 4.E+06

h (J/Kg)

Pres

sure

(MPa

)

T=100 oC

T=180 oC

12 3

Pressure-enthalpy diagram for pure water. Isotherm lines for 100 oCand 180 oC are represented.

(1) Single phase region (liquid water)(2) two phase region (liquid water+vapor)(3) single phase region (heated vapor)

Page 38: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

37

SOIL DESATURATION

•Liquid pressure decrease or air pressure increase: two phase flow with nearly immiscible fluids. Pg≈ Pa (moderate T).

•Vapour pressure increase: gas pressure is dominated by vapour pressure. Pg≈ Pv (relatively high T).

Page 39: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

38

Thermal conductivity

Fourier's law to compute conductive heat flux, i.e.:

i c T= −λ∇Where λ is thermal conductivity of the porous medium.

(1 ) (1 ) dry solid gas sat solid liqφ φ φ φ− −λ = λ λ λ = λ λ

2 31 2 3( )solid solid o a T Ta aTλ = λ + + +

The definition of dry and saturated thermal conductivities permits to separate the dependence on porosity and the dependence on degreeof saturation. Finally,

( )1 llsat d

Sy

Sr

−λ = λ λOn the other hand, the dry and saturated thermal conductivities can be calculated as described above or directly determined experimentally.

Page 40: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

39

Thermal conductivity

Thermal conductivity is used in Fourier's lawto compute conductive heat flux, i.e.:ic T= −λ∇with

( )λ λ λ= −sat

Sdry

Sl l1

(1 )

(1 )

dry solid gas

sat solid liq

−φ φ

−φ φ

λ = λ λ

λ = λ λ

λ λsolid solid o a T a T a T= + + +( ) 1 22

33

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Degree of saturation

Ther

mal

Con

duct

ivity

(W/m

K)

Experimental data

Preoperational

Operational

BENTONITE THERMAL CONDUCTIVITY

Page 41: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

40

Numerical modelling of drying induced by temperature gradients

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.02 0.04 0.06 0.08 0.1Distance from hot side (m)

Deg

ree

of s

atur

atio

n

Calculated. Time(d): 0Calculated. Time(d): 0.5Calculated. Time(d): 2Calculated. Time(d): 14Experimental: Time (d):14

t=0

t=2d

t=0.5d

t=14d

t=14d experiment

T=120 oC T=30 oC

Page 42: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

41

Liquid phase density

As a first approximation, the density of liquid phase can be calculated as:

0 exp( ( ) )ll l lo T cPPρ = ρ β − +α + γ

where a water compressibility (β) and a volumetric expansion coefficient (α) are defined. Reference values of 4.5 10-4 MPa-1 and -3.4 10-4 oC-1 can be used in this expression.

Page 43: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

42

Gas phase density

Gas density is calculated as the sum of vapor and air density. This can be written as:

avg ρ+ρ=ρ

If ideal gases law is used to calculate vapor and air density, it follows that:

v v a ag v a

P MT T

P MR R

ρ = ρ +ρ = +

where the Mv = 0.018 kg/mol and Ma = 0.028 kg/mol are the molecular masses for vapor and dry-air. R is the ideal gas constant (8.3143 J/molK) and T is temperature. On the other hand, partial pressures principle is assumed to hold in the vapor-air mixture (Pg=Pv+Pa), which implies that:

g

aavvg P

MPMPM +=

i.e. the gas phase has variable molecular mass depending on its composition. If Pg is given, air pressure can be calculated as Pa = Pg - Pv where it is assumed that vapor pressure is also known.

Page 44: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

43

Vapor partial pressure

Vapor pressure depends on temperature and suction:

( , ) ( ) ( , )5239.7( ) 136075exp

273

( , ) exp(273 )

v v

v

wc

l

g l

P P F

P

MF PR

s P P

T s T s T

TT

sTT

= ×

−⎛ ⎞= ⎜ ⎟+⎝ ⎠⎛ ⎞−

= ⎜ ⎟+ ρ⎝ ⎠= −

In which Pv(T) is the boundary between (1) and (2) in the phase diagram for pure water and F(s,T) is a reduction term due to capillary effects (psychrometric law).

Relative humidity inside soil pores is assumed to be F

h

vvoP P<

Page 45: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

44

Retention curve

This law relates capillary pressure and degree of saturation. One of the commonly used models is the van Genuchten model (van Genuchten, 1980) that can be written as:

min

max min

le

g l

1/(1- )-P PS S 1+S

S S P

−λλ⎛ ⎞− ⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟− ⎝ ⎠⎜ ⎟

⎝ ⎠

This equation contains the parameters λ and P. The first (λ) essentially controls the shape of the curve while the second (P) controls its height, so this latter can be interpreted as a measure of the capillary pressure required to start the desaturation of the soil. Since capillary pressure can be scaled with surface tension (Milly, 1982) it appears that P also does. This can be shown if Laplace's law is recalled:

2g lP P

r=−

σ

where σ is surface tension and r is the curvature radius of the meniscus.

( )( )o

o

TP PT

σ=

σ( )(1 )1/ 1g l e-P P P S

−λ− λ= −

Page 46: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

450.1

1.0

10.0

100.0

1000.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00Degree of Saturation

Suct

ion

(MPa

)

> 1.73 [1.73 , 1.67] [1.67 , 1.62][1.62 , 1.57] [1.57 , 1.52] < 1.52

BC Drying BC WettingGRIMSEL MOCK_UP

RETENTION CURVES FOR THE BENTONITETest Data

Dry Density (gr/cm3)

Retention Curves

Experimental retention curve

Van Genuchten law

Different densities

Swelling not permitted (except in low density samples)

Page 47: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

46

Darcy’s law

Advective fluxes of liquid and gas are calculated using darcy’s law in the generalized form:

( )rk Pααα α

α

= − ∇ −ρµ

kq g

Where α = l, g if the law is used for liquid or gas phase. Intrinsic permeability (k) relative permeability (krα) and viscosity (µα) should be calculated.

Intrinsic permeability

This parameter depends primarily on the porous medium structure.

2 3 3

3 2 2

(1 )(1 ) (1 )

oo

o

⎡ ⎤− φ= =⎢ ⎥φ − −⎣ ⎦

φ φφ φ

k k a

where φo is a reference porosity and ko is the intrinsic permeability at the reference porosity.

Page 48: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

47

Intrinsic permeability

For a continuum medium (Kozeny’s model)

oo

o

o

oo

φφ

φφ

φφ

matrix for ty permeabili intrinsic :porosity reference :

)1()1( 3

2

2

3

k

kk −−

=

which is used in Darcy’s law:

( )qk

gαα

αα αµ

ρ= − ∇ −k

Pr

0.00E+00

5.00E-14

1.00E-13

1.50E-13

2.00E-13

2.50E-13

3.00E-13

3.50E-13

4.00E-13

0.30 0.35 0.40 0.45 0.50 0.55Porosity (n)

K (m

/s)

Experimental Data

Kozeny's Model (Preoperational)

Kozeny's Model (Operational)

Exponential Model

BENTONITE. INTRINSIC PERMEABILITY

Page 49: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

48

Liquid viscosity

Water viscosity is required in Darcy’s law.

exp273.15l

BT

A ⎛ ⎞µ = ⎜ ⎟+⎝ ⎠Where A = 2.1 10-2 MPa s and B = 1808.5 K-1.

Gas viscosity

273 1 0 ( : intrinsic permeability)11

273

g kk

g

A b C Dk kbBT

PT

+µ = = − ≥

⎛ ⎞ ++⎜ ⎟+⎝ ⎠Where A = 1.48 10-12 MPa s, B = 119.4 K-1, C = 0.14 and D = 1.2 1015. A reduction coefficient takes into account the possibility of Knudsen diffusion (Klinkenberg effect). As the mean free path of the gas particles becomes comparable to the pore size (low permeability material) slip effects (non laminar flow) may result in an apparent lower viscosity (apparent higher gas conductivity).

( ) ( ) ( )1r k r r ko o og g g g g

k b k k bP P PP P

α α αα α α α α α α

⎛ ⎞ ⎛ ⎞= − + ∇ −ρ = − ∇ −ρ − ∇ −ρ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟µ µ µ⎝ ⎠ ⎝ ⎠

k k kq g g g

Page 50: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

49

Fick’s Law. Molecular Diffusion

To calculate vapor and dissolved air migration:

( )mii iS Dα α αα = φ− ρ τ ∇ωi I

where α=l, g and i=a, w depending if diffusion takes place in the liquid (dissolved air) or in the gas phase (vapor).

( )273 nvap

gm

TP

D D⎛ ⎞+

= ⎜ ⎟⎜ ⎟⎝ ⎠

where τ is a tortuosity reduction coefficient, D = 5.9 10-6 m2/s/K-nPa and n=2.3.

In the case of dissolved air, the following expression is used for molecular diffusivity:

( )exp

273m TQD D

R⎛ ⎞−

= ⎜ ⎟⎜ ⎟+⎝ ⎠

Where τ is a tortuosity reduction coefficient, D = 1.1x10-4 m2/s and Q =24530 J/mol.

Page 51: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

50

Mechanical constitutive model

Stress-strain relationship: irreversibleSuction induces swelling and/or collapseStrength depends on suctionEffective stress, suction, temperatureNonlinear laws

γd=20 kN/m3

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20

Vertical stress (MPa)

∆e/

e

MeassuredComputed

Swelling pressure depence on dry density

0

5

10

15

20

1.4 1.5 1.6 1.7 1.8Dry density (gr/cm3)

Swel

ling

Pres

sure

(MPa

) Experimental data (FEBEX)

Model

Page 52: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

51

3. Algunos ejemplos

• Earth dams (2 types)• Two phase flow• Rock deformation at great depth• Radioactive Waste disposal

Page 53: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

52

HM problem: earth dams

El Infiernillo, Mexico

Page 54: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

53

HM problem: earth dams

Construction history

Page 55: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

54

HM problem: earth dams

0

1

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0

tensió vertical (MPa)

def v

ertic

al (%

)

model

mesures reals

Compressionand collapse

Page 56: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

55

HM problem: earth dams

Page 57: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

56

HM problem: dam construction

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180 200

Assentaments (cm)

Ele

vaci

ó(m

)

Assent mesurats en el camp

Assent model amb pluja

Assent model en sec

dry

wetmeasured

D1 D2

Page 58: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

57

Water level

Water level

Page 59: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

58

00.020.040.060.080.1

0.120.140.160.180.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7Tensión media (p)

Tens

ión

de c

orte

(q)

Relleno con capas horizontales

M y HM: Escombrera de residuos salinos sobre lodos mineros

Cu = 30 kPa

Page 60: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

59

No drenado

Drenado

Deformaciones volumetricas(hardening)

Deformaciones de corte.

(Vol =0)

Page 61: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

60

Desplazamientos para los casos analizados con 210 días (rápido), 210 semanas (lento) y 210 meses

(muy lento) al final de la colocación de la 2ª etapa.

210 days

210 weeks

210 months

Page 62: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

610

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000 4000 5000 6000Time (days)

Max

imum

pre

ssur

e

210 days210 weeks210 months

210 days

210 weeks

210 months

Page 63: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

62

0

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000 4000 5000 6000Time (days)

Max

imum

pre

ssur

e

210 days210 weeks210 months

00.020.040.060.080.1

0.120.140.160.180.2

0 0.05 0.1 0.15 0.2 0.25 0.3Tensión media efectiva (MPa)

Tens

ión

de c

orte

(MPa

)

Estadoinicial

final 2a etapa

final 1a etapa

00.020.040.060.08

0.10.120.140.160.18

0.2

0 0.05 0.1 0.15 0.2 0.25 0.3

Tensión media efectiva (MPa)

Tens

ión

de c

orte

(MPa

)

Estadoinicial

final 2a etapa

final 1a etapa

00.020.040.060.080.1

0.120.140.160.180.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Tensión media efectiva (MPa)

Tens

ión

de c

orte

(MPa

)

Estadoinicial

final 2a etapa

final 1a etapa

210 days 210 weeks

210 months

Page 64: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

63

5X5

1.2 m 0.1 m

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 0.2 0.4 0.6 0.8 1

Liquid Saturation

Cap

illar

y pr

essu

re (M

Pa)

BLOCK_1BLOCK_2BLOCK_3BLOCK_4BLOCK_5

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 0.2 0.4 0.6 0.8 1

Liquid Saturation

Cap

illary

pre

ssur

e (M

Pa)

BLOCK_6BLOCK_7BLOCK_8BLOCK_9BLOCK_10

H: GAS AND WATER H: GAS AND WATER FLOW IN A PLANAR FLOW IN A PLANAR

FRACTURE. THE FRACTURE. THE UPSCALING PROBLEMUPSCALING PROBLEM

Page 65: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

64

a) 60X60 ORIGINAL b) 60X60 UPSCALED c) 12X12 UPSCALED

Gas fluxes and degree of saturation

Page 66: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

65

TM: ROCK SALT IN SITU TEST

BAMBUS-I and BAMBUS-II: EC research project

Page 67: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

66

Features: Tunnel + Observation drifts, σconf= 12 MPa, Axial length: 25 m, hexaedral elements, regular mesh, 65,954 nodal points x 4 dof = 263,816 dof

Backfilled Drift with heaters

Observation driftLevel 750 m

Observation driftLevel 800 m

Page 68: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

67

1.5 years of heating

Temperature evolution (whole model)

9 years of heating

end process

7. DRIFT CLOSSURE IN THE HEATED AREA (BAMBUS II - Project : 3-DIM modelling studies)

050

100150200250300350400450500

sep-90

sep-91

sep-92

sep-93

sep-94

sep-95

sep-96

sep-97

sep-98

sep-99Date

Drif

t clo

sure

[mm

]horitzontal drift closure (3D-model)horitzontal ( TSDE experiment)vertical drift closure (3D-model)vertical (TSDE experiment)

Page 69: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

68

(THM) Residuos Radioactivos en Roca fracturada

Evaporation and condensation of water (fractured rock)

J. Rutqvist & C.-F. Tsang (2003)

Page 70: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

69-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

12.5

15

17.5

20

-20 -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 20

Borehole 160: temperature measurements

Borehole 158: temperature measurements

Heated drift including canister heater

Borehole 76: gas tests at 76-3 and 76-4

Borehole 74: gas tests at 74-3 and 74-4

Inner wing heaters

Outer wing heaters

74-4

74-3

76-3

76-4

20

60

100

140

180

220

0

365

730

1095

1460

D ays from start up o f heating

Tem

pera

ture

[ºC

]

158-5

158-10

158-20

158-45

158-55

Temperaturas

Page 71: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

70

Grado de saturación en la roca y en las fracturas

Degree of saturation (after 4 years)

Matrix(initial degree of saturation = 0.92)

Fracture(initial degree of saturation = 0.05)

Page 72: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

71

Case 2 analysis (thermomechanical and mechanical coupling)

Gas permeability variation near drift

-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

12.5

15

17.5

20

-20 -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 20

Borehole 160: temperature measurements

Borehole 158: temperature measurements

Heated drift including canister heater

Borehole 76: gas tests at 76-3 and 76-4

Borehole 74: gas tests at 74-3 and 74-4

Inner wing heaters

Outer wing heaters

74-4

74-3

76-3

76-4

0

0.5

1

1.5

219

/10/

1997

19/1

0/19

98

19/1

0/19

99

18/1

0/20

00

18/1

0/20

01

Date

k/kp

re-h

eatin

g

59-376-3Base CaseCase 2

0

0.5

1

1.5

2

19/1

0/19

97

19/1

0/19

98

19/1

0/19

99

18/1

0/20

00

18/1

0/20

01

Date

k/kp

re-h

eatin

g59-476-4Base CaseCase 2

Page 73: Geotécnia e Ingeniería Sísmica aplicadas a la Minería

Formulación para problemas THM

72

Comentarios finales

• Es conveniente que se puedan elegir las ecuaciones a resolver y fenómenos a incorporar

• Las condiciones de solución numérica cambian mucho según el problema a resolver

• Todos los acoplamientos conocidos hay que incorporarlos en la formulación

• Fenómenos acoplados versus procesos acoplados