Fisica 2 lab 5

8
UNIVERSIDAD NACIONA DE INGENIERÍA FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA LABORATORIO DE FISICA N° 5 HEDER GONZALES BENITES MIJAIL CAMI ALEJO LITA DÍAZ TUNJAR GABRIEL ANTONI SANCHEZ INGA SECCION: N 20

description

calor especifico,de metales cobre, plomo

Transcript of Fisica 2 lab 5

Page 1: Fisica 2 lab 5

UNIVERSIDAD NACIONA DE INGENIERÍAFACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

1. OBJETIVO

Determinar el equivalente en agua de un calorímetro Determinar el calor específico del aluminio Determinar el calor específico del cobre

2. FUNDAMENTO TEÓRICO

Calor y trabajo

LABORATORIO DE FISICA N° 5

HEDER GONZALES BENITES

MIJAIL CAMI ALEJO

LITA DÍAZ TUNJAR

GABRIEL ANTONI SANCHEZ INGA

SECCION: N

2014

Page 2: Fisica 2 lab 5

UNIVERSIDAD NACIONA DE INGENIERÍA

Cuando dos sistemas a diferentes temperaturas se hallan en contacto térmico, el calor fluye del sistema más caliente al más frío, hasta que alcanzan el equilibrio a una temperatura común, la cantidad de calor que sale de un cuerpo es igual a la cantidad de calor que entra en el otro. Inicialmente se elaboró la teoría del calórico, para explicar ese flujo, esta sustancia no podía ser creada ni destruida, pero si transferida de un cuerpo a otro. La teoría del calórico servía para describir la transferencia de calor, pero se descartó al observar que el calórico se creaba por fricción y no habría una desaparición correspondiente de calórico en ningún otro sitio.En 1778 el Conde Rumford, como punto de sus observaciones en el taladro de sus cañones propuso que el calor debe estar asociado con el movimiento. Pero no se estableció sino hasta medio siglo después de esta observación que había una relación definida entre cantidad de trabajo hecho contra la fricción y el calor producido.En 1843 James Prescott Joule empleó un aparato en el cual el agua agitaba por un conjunto de paletas giratorias y la energía mecánica suministrada para rotar las paletas podía medirse con aproximación. El efecto térmico del trabajo mecánico hecho sobre el agua, era la elevación de la temperatura. El experimento de Joule demostró que la elevación de la temperatura era proporcional a la cantidad de trabajo hecho sobre el agua. Por consiguiente el trabajo realizado en agitar el agua es equivalente al calor añadido al agua.A pesar de que no necesitamos unidades especiales para el calor, una vez reconocido que es una forma de energía medible en Joules, o cualquier otra unidad de energía, se sigue utilizando la unidad histórica del calor, es decir la CALORÍA. La caloría se define cuantitativamente como la unidad de energía necesaria para elevar la temperatura de un gramo de agua 14,5°C a 15,5°C. El equivalente exacto entre el trabajo realizado y el calor añadido está dado por la relación experimental: 1 cal = 4, 186 Joules. Esta relación es conocida como el EQUIVALENTE MECÁNICO DE CALOR.

Capacidad calorífica (C)La capacidad calorífica de un cuerpo es la cantidad de calor requerido para elevar la temperatura de un cuerpo en un grado

C=dQdT

Calor específico (c):Es la capacidad calorífica por unidad de masa

c=Cm

= dQmdT

A pesar que el calor específico de las sustancias varía ligeramente con la temperatura, será adecuado para nuestra discusión, asumir que el calor específico es constante independiente de la temperatura. Luego podemos determinar el calor Q necesario para elevar la temperatura de la masa de una sustancia ∆T grados, de la siguiente manera:

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Página 1

Page 3: Fisica 2 lab 5

UNIVERSIDAD NACIONA DE INGENIERÍA

Q=m∫T i

T f

cdT=mc (T f−T i )=mc∆T

3. EQUIPOS Y MATERIALES

Computadora con software LoggerPro instalado Balanza electrónica Cocina eléctrica o jarra eléctrica Termómetro Termo Vaso pirex Guantes y lentes de protección Pinzas de sujeción Objetos metálicos (aluminio y cobre)

4. CÁLCULO Y ANÁLISIS DE RESULTADOS

Parte 1: Equivalente en agua de un calorímetro

Determinación del equivalente en agua de un calorímetroSe pone M gramos de agua en el calorímetro, se agita, y después de un poco de tiempo, se mide su temperatura T0. A continuación se vierten m gramos de agua a la temperatura T. Se agita la mezcla y después de un poco de tiempo se mide la temperatura de equilibrio Teq.

k=¿¿

De acuerdo a los datos experimentales tenemos:

M = 0 g; m = 447 g, T = Tf= 28°C; Teq = 79, 6°C; T0 = Tamb = 27, 81 °CReemplazando:

k=(82−79,6)

(79,6−27,81)×447=20,71 g

Parte 2: Capacidad calorífica de un metal

a) Utilizando agua a mayor temperatura que el metal

C=∆Q∆T

Como la variación de calor la entrega el agua, obtenemos:

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Página 2

Page 4: Fisica 2 lab 5

UNIVERSIDAD NACIONA DE INGENIERÍA

C=ch2omh2o∆T h2o∆Tmetal

Para el aluminio se tiene:mh2o=188 g;∆T h2o=T f−T eq=80 ° C−77.23 °C=2,77 ° C

mAl=46g; ∆T Al=T eq−T amb=77,23° C−27,81 °C=49,42° C

Reemplazando:

C Al=1×188×2,77

49,42=10.54 cal

°C

c Al=Cm

=10,5446

=0,23 calg ° C

Comparando con el cAl aceptado comúnmente: 0,212 cal/g°C, calculamos el porcentaje de error:

∆%=(1−0,2120,23 )×100=7.82%Para el cobre se tiene:mh2o=255 g ;∆T h2o=T f−T eq=81° C−78,08° C=2,92 °CmCu=150g; ∆T Cu=T eq−T amb=78,08 °C−27,81 ° C=50,27

Reemplazando:

CCu=1×255×2,92

50,27=14,81 cal

° C

cCu=Cm

=14,81150

=0,099 calg°C

Comparando con el cCu aceptado comúnmente: 0,099 cal/g°C, calculamos el porcentaje de error:

∆%=(1−0,0940,099 )×100=5.05%b) Utilizando agua a menor temperatura que el metal

Para el aluminio se tienemh2o=245 g ;∆T h2o=T eq−T amb=29,67 °C−27,47 ° C=2,2° CmAl=46g; ∆T Al=T f−T eq=81,2° C−29,67 °C=51,53 ° C

Reemplazando:

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Página 3

Page 5: Fisica 2 lab 5

UNIVERSIDAD NACIONA DE INGENIERÍA

C Al=1×245×2,251,53

=10,46 cal° C

c Al=Cm

=10,4646

=0,227 calg ° C

Comparando con el cAl aceptado comúnmente: 0,212 cal/g°C, calculamos el porcentaje de error:

∆%=(1−0,2120,227 )×100=6,61%Para el cobre se tiene:mh2o=394 g; ∆Th2o=Teq−T amb=28,4 ° C−26,38 °C=2,02 °CmCu=150g; ∆T Cu=T f−T eq=81,7 ° C−28,4 °C=53,3

Reemplazando:

CCu=1×394×2,02

53,3=14,93 cal

°C

cCu=Cm

=14,93150

=0,1 calg ° C

Comparando con el cCu aceptado comúnmente: 0,099 cal/g°C, calculamos el porcentaje de error:

∆%=(1−0,0940,1 )×100=6%

5. CONCLUSIONES

1. En la parte inicial del experimento, se halló que el equivalente en agua del calorímetro es igual a 20, 71 g, lo que quiere decir que estos 20, 71 g se comportaran como la masa del calorímetro para ganar o perder calor.

2. En la parte 2a y 2b hallamos que el calor específico del aluminio es 0,23 cal/g°C y 0,227 cal/g°C respectivamente y comparándolos con el valor comúnmente aceptado se halló que los porcentajes de errores fueron de 7,82% y 6,61% respectivamente. Notamos que estos porcentajes son menores al 10%, para lo cual podemos considerar estos métodos para calcular el calor específico de un cuerpo metálico.

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Página 4

Page 6: Fisica 2 lab 5

UNIVERSIDAD NACIONA DE INGENIERÍA

3. En la parte 2a y 2b hallamos que el calor específico del cobre es 0,099 cal/g°C y 0,1 cal/g°C respectivamente y comparándolos con el valor comúnmente aceptado se halló que los porcentajes de errores fueron de 5,05% y 6% respectivamente. Notamos que estos porcentajes son menores al 10%, para lo cual podemos considerar estos métodos para calcular el calor específico de un cuerpo metálico.

6. BIBLIOGRAFÍA

Física 2 – Hugo Medina Guzmán – Fondo editorial PUCP – 1ra edición páginas 12, 14.

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Página 5