DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL...

36
“DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA” UNIVERSIDAD NACIONAL DE HUANCAVELICA ÁREA DE HIDRÁULICA ASESOR: ING. CIVIL. IVÁN ARTURO AYALA BIZARRO Autor 1:GOETENDIA TORRES, Francis Santiago,[email protected] Autor 2: GUILLEN QUIÑONES, Josely, [email protected]

Transcript of DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL...

Page 1: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

“DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA

MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA”

UNIVERSIDAD NACIONAL DE HUANCAVELICA

ÁREA DE HIDRÁULICA

ASESOR: ING. CIVIL. IVÁN ARTURO AYALA BIZARRO

Autor 1:GOETENDIA TORRES, Francis Santiago,[email protected] 2: GUILLEN QUIÑONES, Josely, [email protected]

Page 2: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

1

I. ÍNDICE.

      I.  ÍNDICE. 1    II.  INTRODUCCIÓN 2   III.  OBJETIVOS 3   IV.  HIPÓTESIS DEL PROBLEMA 3    V.  DESARROLLO DE LA PONENCIA. 4

5.1  ESTUDIO DEL PERFIL DE FLUJO. 45.1.1    DESCRIPCIÓN MATEMÁTICA DEL FLUJO SOBRE 4

REJILLAS DE CAPTACIÓN.               FLUJO ESPACIALMENTE VARIADO EN CANALES 6

DE CAUDAL DECRECIENTE.         Flujo de barras paralelas al flujo. 8

5.2   DIMENSIONAMIENTO Y DISEÑO DE BOCATOMA CON 11 REJILLA DE FONDO.

5.2.1       CONSIDERACIONES PARA EL DISEÑO 115.2.2       DISEÑO DE BOCATOMA TIROLESA. 12

5.2.2.1     DISEÑO DE LA REJILLA DE FONDO – MOSTKOW. 135.2.3       DIMENSIONAMIENTO Y PERFIL DE FLUJO

SOBRE REJILLAS- MÉTODO MOSTKOW: 165.2.3.1     CALCULO DE LONGITUD DE REJILLA PARA

PERFIL DE FLUJO A LO LARGO DE REJILLAS DE BARRAS PARALELA. 17

5.2.3.2     CÁLCULO DEL PERFIL DE FLUJO SOBRE LA REJILLA. 18

5.3   APLICACIÓN. 205.3.1       ANÁLISIS COMPARATIVO DE LA BOCATOMA

EXISTENTE EN LA MINICENTRAL HIDROELÉCTRICA DE SASACSAMARCA. 20

   VI.  POSIBLE SOLUCIÓN DE PROBLEMA. 23 VII.  CONCLUSIONES Y RECOMENDACIONES. 24VIII.  REFERENCIAS BIBLIOGRÁFICAS. 25

Page 3: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

2

II. INTRODUCCIÓN

Las bocatomas tirolesa o de rejilla de fondo son estructuras dispuestas en algunos

problemas de drenaje superficial sobre ríos y quebradas con el objeto de captar el agua

para acueductos y pequeñas centrales hidroeléctricas como es el caso de estudio. Su

diseño hidráulico derivado de los diseños de vertederos tiroleses ha sido adaptado a

nuestro medio por su buen funcionamiento en cauces de montaña y consiste

fundamentalmente en determinar las dimensiones de la obra de contención, los

vertederos de descarga y la rejilla que determina las condiciones y eficiencia del caudal

captado.

En todos los casos, la rejilla de captación se diseña para absorber la mayor cantidad de

agua sobre la longitud mínima, ubicándose en posición horizontal o con inclinación de

hasta 20 % según el flujo (para aumentar la eficiencia de la captación y desfavorecer el

taponamiento de la reja por la acumulación de sólidos), sobre una galería construida en

el cuerpo de un vertedero a través del cauce y son obras que deben operar bajo el

régimen de caudal de las corrientes superficiales e incluso en condiciones extremas

puesto que la carga de sedimentos de lecho durante una creciente pasará sobre la

estructura.

Sin embargo, en la práctica académica y profesional se observa que éstas metodologías

de diseño no se encuentran lo suficientemente difundidas y que en general el

dimensionamiento de la rejilla se realiza sin incluir en el análisis matemático la variación

del caudal captado a través de la rejilla ni la variación de la superficie libre sobre la

rejilla, dejando al margen aspectos muy importantes del fenómeno físico.

Page 4: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

3

III. OBJETIVOS

III.1 OBJETIVO GENERAL

El objetivo es de contribuir al conocimiento de la Hidráulica dando a conocer la

aplicabilidad de las metodologías de dimensionamiento de la rejilla las cuales se

ha hecho mención.

III.2 OBJETIVOS ESPECIFICOS

Comparación usando el método de dimensionamiento de Mostkow y el método

utilizado en la Minicentral Hidroeléctrica de Sacsamarca Huancavelica.

Identificar el tipo de perfil de flujo en la captación de la Minicentral en mención.

Desarrollar los planteamientos técnicos para la bocatoma tirolesa o rejilla de

fondo.

IV. HIPÓTESIS DEL PROBLEMA

IV.1HIPÓTESIS GENERALEl dimensionamiento de una bocatoma tipo tirolesa o rejilla de fondo considerando

los perfiles de flujo según el método de Mostkow.

IV.2HIPÓTESIS ESPECÍFICOS Con la aplicación del método Mostkow el dimensionamiento de la rejilla será

más óptimo y eficiente.

La posibilidad de que el diseño de la bocatoma en la Minicentral Hidroeléctrica

de Sacsamarca presenta dimensiones mayores a las necesarias.

V. DESARROLLO DE LA PONENCIA.

V.1 ESTUDIO DEL PERFIL DE FLUJO.

Page 5: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

4

V.1.1 DESCRIPCIÓN MATEMÁTICA DEL FLUJO SOBRE REJILLAS DE CAPTACIÓN.

El flujo permanente espacialmente variado se define como un flujo en el cual

el caudal varía en la dirección del flujo y se presenta en situaciones que

involucran vertederos de canal lateral, canales con fronteras permeables,

alcantarillados de aguas lluvias y estructuras de caída en el fondo de canales

16.

El modelo de flujo espacialmente variado se considera unidimensional, y por

lo tanto las características de tirante y velocidad de movimiento

corresponden a los valores sobre el eje del canal aun cuando haya asimetría

del flujo que entra o sale. Las hipótesis del modelo se pueden resumir como

4, 15, 16, 17 y 18.

La pendiente del canal es uniforme y el caudal que entra o sale induce sólo

pequeñas curvaturas en el perfil del flujo y líneas de corriente casi paralelas.

Hay distribución hidrostática de la presión en cada sección, sin eliminar con

ello pendientes supercríticas.

La distribución de la velocidad se mantiene igual en cada sección y los

coeficientes de corrección de energía cinética y de cantidad de movimiento

son constantes.

La pérdida de fricción en un tramo se incluye mediante el cálculo de la

pendiente de fricción resultante en cada sección.

El efecto de arrastre (atrapamiento) de aire no se incluye en el tratamiento.

El momentum lineal del caudal que entra se forma sólo de la componente de

cantidad de movimiento; la asimetría que pueda tener dicho caudal en la

dirección transversal no influye en las características del flujo.

Esta última hipótesis, obliga a que el análisis matemático sea distinto entre el

modelo de caudal creciente y el de caudal decreciente, pues la observación

experimental del flujo de caudal decreciente muestra que la desviación de

caudal hacia el exterior no produce cambios importantes en la energía

Page 6: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

5

específica del flujo, siendo el principio de energía muy conveniente para su

análisis 4 y 18.

De esta forma, el régimen de flujo sobre la rejilla, corresponde a una

condición de flujo espacialmente variado con caudal decreciente,

determinado por las ecuaciones de continuidad y energía dadas por:

dQdx

= ddx

(VA )=V dAdx

+ A dAdx

=qx ……….. 1

Donde Q es el caudal en la sección x del canal, A es el área de flujo, V es la

velocidad del flujo yqx=dQ /dx es la variación el caudal en función de x, con dQ/dx

es la variación del caudal a lo largo del eje x, y es negativo.

La energía total del flujo H, en una sección transversal del canal, medido desde un

nivel de referencia cualquiera, es igual a:

H=z+ y∗cosθ+ α Q2

2 g A2 ……………2

Donde y es el tirante en la sección perpendicular al fondo y θ es el ángulo de

inclinación del canal.

Al derivar la ecuación (2) con respecto a x, con Q como variable, se obtiene:

dHdx

=dzdx

+ dydx

∗cosθ+ a2 g [ 2Q

A2∗dQ

dx−

2Q2

A2 ∗dA

dx ]……………3

Con:

dHdx

=−S f ; dzdx

=−senθ=−S0 ……………..4ª

dAdx

=

dAdy

∗dy

dx+ ∂ A

∂ x=T∗dy

dx+ ∂ A

∂ x ……………….4b

Page 7: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

6

Dónde:

Sf, es la pendiente de la línea de energía.

So, es la pendiente del canal (considerando que el canal es de pendiente pequeña).

T=dA/dy, es el ancho de la superficie libre de la sección el número de Froude.

Al sustituir las ecuaciones (4a) y (4b) en la ecuación (3) se obtiene finalmente que

para un canal prismático, donde ∂ A∂x

=0, en donde además el ángulo θ de

inclinación del fondo del canal es pequeño, (cosθ =1), la variación de la superficie

libre está dada por:

dydx

=S0−Sf +

αQ dQg A2dx

1−α F2 ………………….5

FLUJO ESPACIALMENTE VARIADO EN CANALES DE CAUDAL DECRECIENTE.

En el análisis a realizar, la carga de presión real sobre el fondo al inicio de la reja,

se escribe como: po/gρ = α’yo, donde es un factor de corrección, tal que cuando la

presión corresponde a la hidrostática su valor es uno; esto debido a que como se

observa en la Figura 2, la curvatura de las líneas de corriente sobre la rejilla es

apreciable, lo que significa que la presión sobre el fondo no es hidrostática y es

necesario aplicar un factor de corrección.

Figura 2. Flujo sobre una reja de fondo.

Page 8: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

7

Además, partiendo de que la bocatoma de fondo se localiza en un canal

rectangular de ancho b, con longitud y pendiente pequeñas, donde α=1 y So ≅ Sf,

con A=by y F²=Q²/(gb²y³),la ecuación (5) se convierte en:

dydx

=−Qy( dQ

dx)

gb2 y2−Q2 ……………………6

La energía específica Eo al inicio de la reja, que se considera constante en

cualquier sección del canal es igual a:

E0=α ' y0+V 02

2g= y+ Q 2

2gb2 y2 …………………..7

De donde se obtiene que el caudal es:

Q=by√2g (E0− y) …………………8

Sustituyendo la ecuación (8) en la (6), se obtiene la siguiente ecuación para

determinar el perfil de flujo sobre la rejilla:

dx= √ gb(3 y−2E0)

√2√E0− y (−dQdx

)dy ………………….9

El caudal Qo que conduce el río es igual al de la sección inicial de la reja, y por lo

tanto, de la ecuación de energía específica en dicha sección se tiene que:

Q0=b y0√2g (E0−α ' y0) ………………….10

Para la sección al final de la reja, de la ecuación (8), el caudal QL es igual a:

QL=b yL√2g (E0− yL) ……………………11

Page 9: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

8

Por lo tanto, el caudal captado o retirado Qr, por una reja de longitud L es

igual a:

Qr=Q0−QL ………………………….. 12a

O a partir de las expresiones (11) y (12):

Qr=Q0(1− y L√1− y L

E0

y0√1−α' y0E0

) …………….12b

Según el trabajo realizado por Mostkow [8], en el caso de rejas construidas

con barras paralelas a la corriente, como en la Figura 2c, el flujo a través de

las aberturas es aproximadamente vertical, la pérdida de energía es

despreciable y la carga efectiva sobre ellas es prácticamente igual a la

energía específica Eo con que el flujo llega a la reja.

Mientras que en el caso de rejillas formadas a base de una placa perforada

(Figura 2d), la dirección del flujo a través de los orificios tiene un ángulo

apreciable con la vertical y se ve afectado por los sedimentos incrustados

en las perforaciones, que producen una pérdida de energía apreciable por

el cambio de dirección, de inclinada eventualmente a vertical.

Dicha pérdida es casi igual a la carga de velocidad del flujo sobre la reja,

por lo que la carga efectiva es igual a la carga estática o se puede

confundir con el tirante.

Expuestas estas razones, se hace necesario presentar por separado las

expresiones específicas para determinar la longitud de la rejilla según su

tipo.

Flujo de barras paralelas al flujo.En general, la tasa de cambio del caudal unitario derivado a través de la

rejilla está dada por una expresión que depende de la carga hidráulica

Page 10: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

9

sobre ésta, afectada por un coeficiente de descarga, el cual depende de las

características hidráulicas del flujo de aproximación, la geometría de la

rejilla (longitud, pendiente y orientación respecto al flujo), y las barras que

forman la rejilla (forma, tamaño y espaciamiento).

En el caso de barras paralelas, la carga hidráulica efectiva sobre las

aberturas de la reja es la energía específica del flujo sobre ellas y la

variación del caudal desviado a través de la reja se expresa de la siguiente

forma:

−dQdx

=ε Cd b√2g E0=mb√2 gE0 …………………..13

Donde:

Eo=Energía específica del flujo a la entrada de la reja.

b=Ancho total de la rejilla, medido en dirección perpendicular al flujo. (Se

está haciendo brejilla=bcanal=b)

m=coeficiente global de descarga (m= εCd)

Cd=Coeficiente de descarga a través del espacio entre dos barras

consecutivas.

An=Área neta de paso a través de las barras.

ε=(1−f )An

At es igual al cociente del área de paso entre rejas y su área

total o coeficiente de porosidad afectado por el factor de obturación.

At=Área total de rejas.

f=Coeficiente de obstrucción, originado por las arenas y gravas que se

incrustan y que se toma de 5 a 30%.

En la reja de barras paralelas se considera que el coeficiente de porosidad

p, es igual a:

p=( aa+e ) …………………14

Page 11: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

10

Donde e y a corresponden a los tamaños del espesor y la abertura entre

barras, respectivamente, como se indica en la Figura 2.

Al sustituir la ecuación (13) en la ecuación (9) y reorganizar, se obtiene

que:

dx=

3 y2 E0

−1

m√1−( yE0 )

dy ……………………15

Al integrar la ecuación (15), y determinando la constante de integración de

la condición de frontera a la entrada de la rejilla donde: x=0, y= ’yo, la

ecuación para el cálculo del perfil de flujo a lo largo de una rejilla de barras

paralelas es igual a:

x= 1m [ y0∗√1−α '( yE0 )− y∗√1−( y

E0 )] ………………….16

De la condición de frontera a la salida de la rejilla, donde x=Lm , se obtiene

la ecuación para determinar la longitud mínima necesaria para desviar todo

el caudal Qo del río a través de la reja al alcanzar el tirante yL=0 (Ver

Figura 2b):

Lm=y0m √1−α' ( y0

E0 ) …………………17

De esta forma, para una reja de longitud x=L dada y caudal Qo mayor en el

río, de la ecuación (16) se obtiene el tirante y=yL al final de la reja y de la

ecuación (12b) se obtiene el caudal realmente captado con la longitud L de

la reja.

Para derivar una expresión que permita determinar la longitud de la rejilla

en términos del caudal captado, puede considerarse que en la sección de

entrada a la rejilla: y=yo, y que de la ecuación (10), con Qo=Qr, se tiene

que al despejar yo, tras sustituir en la ecuación (17), se obtiene que:

Page 12: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

11

Lm=Qr

mb√2 g E0 …………………18

Donde Qr es el caudal captado por la reja y Qo el de la sección inicial, es

decir, el caudal del río.

Tabla 1. Valores de CV, yo/Eo, ’, Eo/ EL, y Cd para el flujo sobre rejas, según Mostkow (1959)

V.2 DIMENSIONAMIENTO Y DISEÑO DE BOCATOMA CON REJILLA DE FONDO.

V.2.1 CONSIDERACIONES PARA EL DISEÑO

Ubicación: La ubicación más apropiada para una bocatoma se presume en los tramos

rectos y estables del río, dependiendo de la topografía, la geología, la

capacidad portante de los suelos y, principalmente, de las variaciones

hidrológicas del lugar que nos servirá de emplazamiento.

Topografía:Definida la posible ubicación, se realizarán los siguientes trabajos

topográficos:

Levantamiento en planta del cauce del río, entre 500m. a 1000m; tanto aguas

arriba

Perfil longitudinal del río, por lo menos 1000m, tanto aguas arriba como aguas

Page 13: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

12

Condiciones Geológicas y Geotécnicas:Es importante conocer las condiciones geomorfológicas, geológicas y

geotécnicas, ya que su conocimiento permitirá dimensionar en mayor

seguridad la estructura; por lo que se recomienda la obtención de los

siguientes datos como resultado de los estudios geológicos geotécnicos:

Información Hidrológica:Es de suma importancia conocer el comportamiento hidrológico del río, ya que

esto permitirá garantizar el caudal a derivar y así como definir el

dimensionamiento de los elementos conformantes de la bocatoma. Entre los

datos a obtener son:

Condiciones Ecológicas:Siempre toda construcción en un río causa alteración del equilibrio ecológico

de la zona, sobre todo en lo relacionado con la fauna. Es por esta razón que,

se debe tratar de no alterar dicho equilibrio mediante la construcción de

estructuras que compensen este desequilibrio causado por la bocatoma.

V.2.2 DISEÑO DE BOCATOMA TIROLESA.

En la bocatoma el agua se capta a través de una rejilla colocada en la parte

superior de la presa y que se ubica en sentido normal de la corriente. El

ancho de esta presa puede ser igual o menor que el ancho del río.

La bocatoma de fondo consta de una presa, con cota superior al mismo nivel

de la cota del fondo del río, construida generalmente en concreto y dentro de

la que se encuentra el canal de colector.

Las partes integrantes de una bocatoma de fondo, son:

AZUD: El azud es una estructura de derivación que sirve para elevar el nivel

de las aguas, a la vez cumple la función de captar y dejar escapar el agua

excedente que no debe ingresar al sistema.

Page 14: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

13

SOLERAS: Se trata de una losa o piso a desnivel, en concreto o en roca, que

se ubican aguas arriba y aguas abajo de la presa. Tienen por objeto protegerla

de la erosión, además, crear un pozo de sedimentación donde se depositen

los materiales de suspensión.

MUROS LATERALES: Encauzan el agua del río hacia la rejilla y protegen los

taludes de avenidas o crecientes, se construyen en concreto donde el espesor

y la longitud de estos dependerá del estudio de estabilidad de los muros.

CANAL COLECTOR: Recibe el agua a través de la rejilla y entrega el agua

captada a la cámara de recolección. Por facilidad de construcción y de

mantenimiento se recomienda la utilización de la sección rectangular, la que

debe tener una pendiente entre 1 % y 14 %, garantizando la velocidad

adecuada para que el agua fluya previniendo la sedimentación.

REJILLA: Esta se coloca sobre el canal colector que se encuentra dentro de

la presa. La longitud de la rejilla, y, por tanto, la del canal colector, puede ser

menor que la longitud de la presa, según las necesidades del caudal que se

ha de captar. Los barrotes y el marco pueden ser de hierro, con separación

entre barrotes de cinco a diez centímetros y diámetro de los mismos de 1/2",

3/4" ó 1".

CÁMARA DE RECOLECCIÓN: Generalmente, es cuadrada o rectangular,

con muros en concreto reforzado cuyo espesor puede ser de 30 centímetros y

su altura igual a la de los muros laterales.

TRAMPA DE GRAVAS: La trampa de gravas es un canal de sección

rectangular de profundidad efectiva, compuesta por disipadores-retenedores

aguas arriba de la bocatoma que se extiende en todo el ancho del cauce.

V.2.2.1 DISEÑO DE LA REJILLA DE FONDO – MOSTKOW.

a) Calculo de la lámina de carga y la velocidad:

Page 15: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

14

Primero se considerara el cálculo de la lámina de agua para las

condiciones de diseño

El diseño de esta estructura está basado en las teorías fundamentales

de la hidráulica: Ecuaciones de energía, continuidad y cantidad de

movimiento, complementadas con las ecuaciones de vertederos y

orificios. Inicialmente, para el diseño debe establecerse el punto donde

se ubicará la bocatoma, sitio donde debe conocerse el caudal, la cota

del fondo del río, y el ancho del río. La bocatoma y la garganta de la

bocatoma se diseñan como un vertedero rectangular, cuya ecuación

corresponde a

La velocidad del agua al pasar sobre la rejilla será de:

Dicha velocidad deberá estar entre 0,3 y 3 m/s, de esta manera,

pueden aplicarse las ecuaciones de H. Babbit para determinar el ancho

de la caña.

b) Calculo de la energía especifica:

La energía específica Eo al inicio de la reja, que se considera constante

en cualquier sección del canal es igual a:

EO=α ' y0+V 02

2g= y+ Q2

2g b2 y2

c) Calculo de la longitud mínima de rejilla:

Para derivar una expresión que permita determinar la longitud de la

rejilla en términos del caudal captado, puede considerarse que en la

Page 16: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

15

sección de entrada a la rejilla: y=yo, y que Qo=Qr, se tiene que al

despejar yo, tras sustituir en la ecuación, se obtiene que:

Lm=Qr

mb√2 g E0

Donde:

Eo =Energía específica del flujo a la entrada de la reja.

b = Ancho total de la rejilla, medido en dirección perpendicular al flujo.

(Se está haciendo brejilla=bcanal=b)

m = coeficiente global de descarga (m= Cd)

Cd = Coeficiente de descarga a través del espacio entre dos barras

consecutivas.

An = Área neta de paso a través de las barras.

= es igual al cociente del área de paso entre rejas y su

área total o coeficiente de porosidad afectado por el factor de

obturación.

At = Área total de rejas.

f = Coeficiente de obstrucción, originado por las arenas y gravas que

se incrustan y que se toma de 5 a 30%.

Donde Qr es el caudal captado por la reja y Qo el de la sección inicial,

es decir, el caudal del río.

Como consideramos que las barras de la rejilla se colocarán

perpendiculares a la presa, y por lo tanto en la dirección del flujo, se

considera que el área neta de la rejilla se puede determinar con la

siguiente expresión:

Siendo:

An = Área neta de la rejilla (m2)

Page 17: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

16

a = Separación entre barras (m)

N = Número de orificios entre barras

Donde b es el diámetro de cada barrote.

La superficie total de la rejilla es aproximadamente:

Haciendo la relación entre área neta y área total (área total en función

de la longitud de la rejilla), se obtiene:

Por último, se estima la velocidad aproximada entre barrotes:

V.2.3 DIMENSIONAMIENTO Y PERFIL DE FLUJO SOBRE REJILLAS- MÉTODO MOSTKOW:

A continuación detallaremos el criterio de Mostkow (1957), el cual se ha

mostrado muy de acuerdo con medidas efectuadas en obras reales, el

método de Mostkow parte de las siguientes hipótesis:

El escurrimiento sobre la reja sumidero conserva el Bernoulli, es decir

es a energía constante.

La velocidad del flujo a través de la reja se debe a la carga hidrostática

más la altura de velocidad, en el caso de rejas con las barras

orientadas en el sentido del escurrimiento. En el caso de una plancha

perforada (con perforaciones circulares) se debe considerar solamente

la carga hidrostática “h”.

El coeficiente de gasto es constante a lo largo de la reja.

Page 18: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

17

El efecto de la pendiente de la reja puede considerarse incorporado

en el coeficiente de gasto. El método puede aplicarse para

inclinaciones menores al 15%.

Denominando “Bs” al ancho de la reja sumidero y LR al largo de la reja en el

sentido del escurrimiento, la energía específica en una sección cualquiera de

la reja (distancia x), queda por la siguiente expresión:

V.2.3.1 CALCULO DE LONGITUD DE REJILLA PARA PERFIL DE FLUJO A LO LARGO DE REJILLAS DE BARRAS PARALELA.

La ecuación siguiente corresponde a las ecuaciones para el cálculo de los

perfiles de flujo a lo largo de rejillas de barras paralela:

………(1)Ecuación de Perfil de flujo de barras paralelas al flujo

La cual al ser evaluada para las condiciones de frontera que definen en

inicio y el fin de la rejilla toman la forma presentada por las ecuaciones

siguientes que permiten el cálculo de la longitud de la rejilla.

………………….. ..(2)

Page 19: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

18

………………………………(3)Cálculo de la longitud de la Rejilla

Dónde:

Qr=Caudal captado por la reja

Eo=Energía específica del flujo a la entrada de la reja.

b=Ancho total de la rejilla, medido en dirección perpendicular al flujo. (Se

está haciendo brejilla=bcanal=b)

m=coeficiente global de descarga (m=εCd)

Si bien el cálculo de la longitud de la rejilla no reviste mayor complejidad

pues una vez determinada la pendiente de la rejilla es posible conocer los

valores de los diferentes parámetros necesarios a partir de la Tabla 2

Para facilitar esta evaluación, en este trabajo se construyeron las

relaciones gráficas para la determinación de la longitud de la rejilla de

barras paralelas (las cuales se presentan en el Anexo 1) en términos de la

inclinación de la rejilla, el caudal unitario que pasa sobre ella, así como de

diferentes valores del factor de obturación f, para diferentes

configuraciones de rejillas.

En la construcción de estos gráficos se ha considerado como límite

máximo para el caudal unitario una magnitud de 0.5 m²/s, tal que, la

longitud asociada, se considera la longitud máxima recomendada en

términos constructivos.

V.2.3.2 CÁLCULO DEL PERFIL DE FLUJO SOBRE LA REJILLA.

Para mostrar la importancia de determinar el perfil de flujo para diferentes

caudales en el dimensionamiento de una rejilla, se considerará un canal

rectangular en el cual se dispone de una bocatoma de fondo, con el objeto

de captar, para propósitos de suministro a un sistema de acueducto, un

caudal unitario por ejemplo de 0.15 m²/s, en una fuente superficial donde

Page 20: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

19

el caudal unitario sobre la rejilla puede alcanzar durante una creciente un

valor máximo de 4.5 m²/s.

Del análisis de sedimentos de la fuente, se asigna un factor de obturación

del 25%(máximo es de 30%), para una rejilla de barras paralelas con

espesor e= 1 cm y de espaciamiento entre las barras a= 1.5 cm, con una

inclinación del 10%.

Con los datos definidos se obtiene una longitud máxima de rejilla de 45

cm, luego, el cálculo de perfil de flujo se hace con la ecuación (1) y de la

tabla (1) se tiene que: Cv=1.55, Cd=0.435, α’=0.615 (obtenido de la tabla

con valores experimentales de Mostkow).

A partir de la longitud de rejilla seleccionada, la energía y la profundidad

de flujo al inicio de la rejilla en términos de cualquier caudal sobre ella

está dadas por las ecuación (23) y el valor de yo/Eo=0.449.

…………………………..(4)

De esta forma, en la ecuación (16), con x=L=0.45, y=yL, se obtiene que:

…………..(5)

Así mismo, de la ecuación (12b), se tiene que:

………………...(6)

Con estos datos podemos formar una tabla para caudal variable unitario

Page 21: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

20

Nos presenta la variación del caudal qr captado para diferentes caudales

de circulación sobre la rejilla qo.

Adicionalmente es posible construir una figura que nos muestra los

perfiles de flujo sobre la rejilla, en el caso del ejemplo para qo=0.15, 0.6 y

1.2 m²/s, a ´partir de la ecuación siguiente

Indica los niveles del flujo sobre la rejilla para los diferentes caudales

asociados.

Page 22: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

21

Perfiles de flujo para diferentes caudales sobre la rejilla.V.3 APLICACIÓN.

V.3.1 ANÁLISIS COMPARATIVO DE LA BOCATOMA EXISTENTE EN LA MINICENTRAL HIDROELÉCTRICA DE SASACSAMARCA.

Page 23: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

22

DISEÑO BOCATOMA TIPO REJILLA DE FONDO O TIROLESA

DATOS:

CAUDAL DE DISEÑO : 2.37 m3/sCAUDAL MINIMO : 0.242 m3/sCAUDAL MAXIMO : 6.85 m3/sCAUDAL MEDIO : 1.37 m3/sANCHO DEL RIO : 5.5 m3/s

1. CALCULO DE LA LAMINA DE AGUA PARA CONDICIONES DE DISEÑO:

H = 0.37993726

2. VELOCIDAD DEL RIO SOBRE LA BOCATOMA:

Vr = 1.13415854

3 CALCULO DE LA ENERGIA ESPECIFICA:

y= 0.5 m

Eo = 0.53787 NOTA: la energia especifica Eo al inicio de la rejase considera constante en cualquier seccion del canal

4 CALCULO DE LA LONGITUD MINIMA DE REJILLA

NOTA: es la longitud minima necesaria para desviar todo el caudal del rio atravez de la reja

Donde: al alcanzar tirante YL= 0

Eo=Energía específica del flujo a la entrada de la reja.b=Ancho total de la rejilla, medido en dirección perpendicular al flujo.

(Se está haciendo breji l la=bcanal=b) m=coeficiente global de descarga (m=εCd)

Qr=Caudal captado por la reja

Page 24: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

23

Entonces:

* Calculo de la constante(ɛ) que relaciona An y At

Donde An es: Area neta de paso atravez de las barras

Nota: se asumiran barrotes de 1" y separacion de ellas de 2"y la velocidad entre barrotes de 0.6 m/s

An = 4.3889

si: a= 0.05 mb= 0.01 mB(ancho de canal ) = 1 m

Lr= 5.2667Lr= 3.9

verificando An = 3.3 m2

Donde At es: Area total de rejas

se calculara el numero de orificios donde:

N = 65

At = 3.9 m2

f es el coeficiente de obstruccion, originado por las arenas y gravas que se incrustan y que se toman de 5 a 30%

en nuestro caso se considerara 25%entonces calcularemos ɛ

ɛ= 0.625

* Calculo de msi : Cd = 0.466 ………. Valores experimentales

m = Cd*ɛ según Moskotm = 0.1456

* Calculo de la longitud minima necesaria para desviar el Caudal de rio atravez de la reja

Page 25: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

24

* Calculo de la longitud minima necesaria para desviar el Caudal de rio atravez de la reja

Donde :

Qr = 2.37m = 0.15b = 1E0= 0.54

Lm = 5.01

5. Niveles en Canal Colector→Aguas Abajo

Donde:

he = Profundidad aguas abajo (m)hc = Profundidad crítica (m)i = Pendiente del fondo del canal

hc= 0.8305 g = Aceleración de la gravedad (m/s2)Lc = Longitud del canal

→Aguas Arriba

Lcanal=Lrejilla+espesor del muro⁼ 5.31

Tomando una pendiente i=3%

ho= 1.37941

→Altura de muros del canal de aduccion

Ho= 1.62941

He= 1.78874

La velocidad del agua al final del canal es:

Ve= 2.85373

ho = Profundidad aguas arriba (m)

VI. POSIBLE SOLUCIÓN DE PROBLEMA.

El dimensionamiento de una bocatoma tipo tirolesa o rejilla de fondo considerando los

perfiles de flujo según el método de Mostkow como una alternativa de diseño de

bocatomas para altas montañas es el más eficiente y de mejor comportamiento en el

transporte de sedimentos.

Al comprobando que la bocatoma en estudio se encuentra sobre dimensionada siendo

menor la longitud de rejilla requerida. (Longitud actual L=8m y longitud obtenida L = 5m)

Page 26: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

25

VII. CONCLUSIONES Y RECOMENDACIONES.

CONCLUSIONES. La condición de flujo, que se presenta sobre la rejilla de una captación de

fondo no cuenta con una solución analítica que permita determinar la

variación de la superficie de libre sobre la estructura de captación.

El método de Mostkow, facilita enormemente la labor de la determinación

de la longitud de la rejilla, la cual se determina a partir de los gráficos

construidos, una vez que se define el tipo de rejilla que se desea instalar

únicamente en términos del caudal unitario que será captado

De su análisis conjunto (de la tabla y la figura) se observa como un valor

exagerado de la longitud de la rejilla genera una captación de un caudal

mayor al requerido, lo cual tiene implicaciones en la dinámica fluvial de la

obra aguas abajo de la estructura de captación y que permite disponer de

valores más confiables del caudal de excedencia bajo el cual se deben

diseñar las posteriores obras de alivio, así como los vertederos de la

obra.

.

RECOMENDACIONES.

La utilización del método de Mostkow para un diseño optimo en

bocatomas tipo tirolesa o rejilla de fondo.

Las consideraciones a tomar en cuenta son de gran importancia para un

diseño óptimo de una estructura hidráulica.

Page 27: DIMENSIONAMIENTO Y PERFILES DE FLUJO DE BOCATOMAS TIROLESA O DE REJILLA DE FONDO UTILIZANDO EL MÉTODO DE MOSTKOW EN LA MINICENTRAL HIDROELÉCTRICA DE SACSAMARCA finalll

26

VIII. REFERENCIAS BIBLIOGRÁFICAS.

J.A. Pérez, C. Quiceno, M. Botero, A.F. Cano G. Posgrado en Aprovechamiento

de Recursos Hidráulicos Facultad de Minas, Universidad Nacional de Colombia,

Sede MedellÍn. ESTUDIO EXPERIMENTAL DE REJILLAS EN BOCA TOMA DE

FONDO

Castillo Elsitdié, L.G; Lima Guamán, P. Análisis del dimensionamiento de la

longitud de reja y del canal lateral en una captación de fondo - XXIV congreso

latinoamericano de hidráulica, Punta del este, Uruguay, Noviembre 2010.