Cuadernillo matemática ingreso2013

96
Para el ingreso a las carreras: Contador Público Nacional Licenciatura en Administración Ciclo General en Ciencias Económicas Profesorado en Ciencias Económicas Profesorado en Matemática Licenciatura en Matemática Facultad de Economía y Administración Universidad Nacional del Comahue. Año 2013. Este cuadernillo está basado en el material realizado por las profesoras Valeria Castaño y Silvia Rodríguez y modificado por el grupo de Docentes Tutores de la FaEA

description

 

Transcript of Cuadernillo matemática ingreso2013

Page 1: Cuadernillo matemática ingreso2013

Para el ingreso a las carreras:

Contador Público Nacional – Licenciatura en Administración

– Ciclo General en Ciencias Económicas – Profesorado en

Ciencias Económicas – Profesorado en Matemática –

Licenciatura en Matemática

Facultad de Economía y Administración

Universidad Nacional del Comahue.

Año 2013.

Este cuadernillo está basado en el material realizado por las profesoras Valeria Castaño y Silvia Rodríguez y

modificado por el grupo de Docentes Tutores de la FaEA

Page 2: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

1

¡Bienvenidos!

Estos apuntes han sido pensados para ayudarte a recuperar y consolidar los

conocimientos matemáticos que seguramente adquiriste en el nivel medio, y que son la base

para afianzar otros más complejos relacionados con la profesión que elegiste.

Para que podamos alcanzar este propósito es necesario que emprendas esta nueva etapa

con responsabilidad y compromiso, sabiendo que nada es posible sin esfuerzo y que nada

es tan difícil, incomprensible o inalcanzable como parece, sólo se necesita constancia,

paciencia y horas de estudio.

Te sugerimos la lectura de este cuadernillo previa a la asistencia al curso. En

clase se desarrollarán algunos ejemplos, se trabajará en grupo y se podrán consultar las dudas

que hayan tenido en la resolución de los problemas.

Son objetivos de este curso que te habitúes a los tiempos disponibles en la Universidad

para estudiar un tema, que siempre son breves, y que fortalezcas tu capacidad de resolver

problemas de la manera más conveniente y en el menor tiempo posible, por lo que esperamos

que aproveches los horarios de clase para completar aquellos ejercicios en que hayas tenido

inconvenientes y verifiques los resultados que obtuviste, y no para comenzar a resolverlos

recién en la clase.

Cada persona tiene una modalidad de estudio, de trabajo. Sin embargo te recomendamos

que sigas el orden en que están presentados los temas y que trates de resolver la guía de

ejercicios de cada uno de ellos. Es posible que aparezcan dificultades, no te desanimes, volvé a

intentarlo. Si aún no llegás a la solución, anotá las dudas y buscá ayuda, un profesor o un

compañero pueden brindártela. No te desanimes, seguí adelante, todo es posible, sólo hay que

intentarlo.

Page 3: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

2

IINNDDIICCEE::

Conjuntos Numéricos…………………………………………………. 3

Polinomios……………………………………………………………… 26

Expresiones Algebraicas Racionales………………………………. 44

Ecuaciones e Inecuaciones…………………………………………… 52

Funciones………………………………………………………………. 68

Trigonometría………………………………………………..………… 85

Bibliografía…………………………………………………………….. 94

Page 4: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

3

CONJUNTOS NUMÉRICOS

La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver

situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada

cantidad de elementos (existen siete notas musicales, 9 planetas, etc.), para establecer un orden

entre ciertas cosas (el tercer mes del año, el cuarto hijo, etc.), para establecer medidas (3,2

metros, 5,7 kg, –4ºC, etc.), etc.

Problema 1: Escribir los dígitos 1, 2, 3, 4, 5, 6, 7, 8, 9 en las casillas de forma que la suma de

los tres números de cada fila, de cada columna, y de las dos diagonales, dé siempre el mismo

resultado. A esta distribución se le llama cuadrado mágico.

4 2

5

8

Podemos afirmar que todos los números que utilizamos para resolver este problema son

números naturales.

El conjunto de los números naturales está formado por aquellos que se utilizan para contar. Se

los designa con la letra ℕ y se representan:

ℕ = 1, 2, 3, 4, 5,…

Es un conjunto que tiene infinitos elementos pues si bien tiene primer elemento, el 1 que es el

menor de todos, no tiene último elemento ya que es suficiente con sumar 1 a un número para

obtener otro mayor. Así, podemos afirmar también que es un conjunto ordenado, por lo que

podemos representarlos sobre una recta de la siguiente manera:

Observación:

Todo número natural 𝑛 tiene su sucesor 𝑛 + 1 y excepto el 1 también tiene su antecesor,

𝑛 − 1.

Siempre que se sumen dos números naturales se obtendrá otro número natural mientras

que muchas veces, no sucede lo mismo si se restan.

1 2 3 4 5 6

Page 5: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

4

Pregunta: ¿Es posible encontrar un número que al restárselo a 32 dé por resultado 38?

Si lo traducimos al lenguaje algebraico: 32 − 𝑥 = 38, donde 𝑥 representa al número buscado.

Es imposible encontrar un número natural que cumpla con estas condiciones. Decimos que esta

ecuación no tiene solución en el conjunto de los números naturales y lo escribimos así , 𝑆 = ∅ .

Para encontrar una solución a esta ecuación debemos buscarla en el conjunto de los números

enteros, que se simboliza ℞ y está formado por los números naturales, el cero y los opuestos de

los números naturales.

℞ = … ,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5,… = ℕ− ∪ 0 ∪ ℕ

El conjunto de los números enteros es un conjunto infinito que no tiene ni primer ni último

elemento, por lo que todo elemento de este conjunto tiene su siguiente 𝑛 + 1 y su anterior,

𝑛 − 1.

Entre dos números enteros 𝑎 y 𝑏 hay siempre una cantidad finita de números enteros, esta

propiedad se conoce con el nombre de discretitud.

Observación:

Al número – 𝑎 se lo llama opuesto de 𝑎. Dos números opuestos son aquellos que se

encuentran a la misma distancia (en unidades) del cero. Uno positivo y uno negativo, con

excepción del cero, cuyo opuesto es él mismo.

Por ejemplo: Si 𝑎 = 4 , su opuesto −𝑎 es −4

Si 𝑎 = −11, su opuesto –𝑎 es − −11 = 11

El valor absoluto o módulo de un número 𝑎 se define como la distancia de éste al cero.

-1 es el opuesto de 1

2 es el opuesto de -2

-3 -2 -1 0 1 2 3

3 unidades

3 3

1 unidad

1 1

-3 -2 -1 0 1 2 3

Page 6: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

5

Dos números opuestos tienen igual distancia al cero, es decir, tienen el mismo valor

absoluto, es decir, 𝑎 = −𝑎 .

Actividad 1:

a) En la siguiente recta numérica están ubicados 0, 1 y 𝑎 .

¿Dónde ubicarías los números 𝑎 + 1,−𝑎 y −𝑎 + 1?

b) En la siguiente recta están ubicados los números 0 y 𝑎.

¿Dónde ubicarías al número – 𝑎 ?

Observación:

La suma de dos números enteros da siempre un número entero.

La multiplicación de dos números enteros da siempre un número entero.

¿Pasará lo mismo con la división?

4 ∶ 2 = 2 ya que 2 ∙ 2 = 4

−6 ∶ 3 = −2 ya que 3 ∙ −2 = −6

En general 𝑎 ∶ 𝑏 = 𝑐 , 𝑏 ≠ 0 si se verifica que 𝑏 ∙ 𝑐 = 𝑎

Pero, ¿Cuál será el resultado de 4 ∶ 3? Debemos pensar en un número entero tal que al

multiplicarlo por 3 dé como resultado 4. ¿Hay algún número entero que cumpla con esta

condición?

Para resolver esta situación habrá que introducir otro conjunto numérico, el conjunto de los

números racionales al que denotaremos con la letra ℚ.

Un número racional es el cociente (división) de dos números enteros 𝑚 y 𝑛, siendo 𝑛 ≠ 0. Por lo

tanto: ℚ = 𝑚

𝑛 ,𝑚, 𝑛 ∈ ℞ , 𝑛 ≠ 0 , donde 𝑚 es el numerador y 𝑛 el denominador. Notemos que

℞ ⊂ ℚ.

De la definición de número racional surge que todo número entero es racional, pues podemos

considerar al entero como un racional de denominador 1.

Por ejemplo: −3 =−3

1 , donde −3 ∈ ℞, 1 ∈ ℞ y 1 ≠ 0 .

Podemos preguntarnos: ¿Por qué se excluye al 0 del denominador en la definición?

Representemos en la recta numérica algunos números racionales:

0 1 a

a 0

−1

3 0 1

4

3

Page 7: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

6

Actividad 2: En cada caso, ubicar en la recta numérica los números racionales indicados.

a) −4

3

b) 3

8 𝑦 − 1

c) 1 𝑦 −1

3

d) 0 y 1

2

Actividad 3:

a) ¿Qué número representa p?

b) Encontrar las fracciones irreducibles que representan a y b.

Actividad 4: Ahora analicemos algunas expresiones decimales:

0,3 es la expresión decimal de un número racional porque 0,3 =3

10 y 3 y 10 son números

enteros.

0, 5 = 0,555 …. es la expresión decimal de un número racional porque 0, 5 =5

9 y 5 y 9 son

números enteros.

0,15 = 0,1555 …… es la expresión decimal de un número racional porque 0,15 =14

90 y 14

y 90 son números enteros.

Estos tres últimos ejemplos muestran los tres tipos diferentes de expresiones decimales que

puede tener un número racional:

Expresión decimal finita: 0,3 ; −0,107 ; 12,001

Expresión decimal periódica pura: 0, 23 = 0,2323 … ; 7, 20 = 7,202020 ….

Expresión decimal periódica mixta: 0,15 = 0,1555 … . ; −5,2513 = −5,251313 … ..

0 2

3

0

−3

4 0

−1

2

1

8

−2

3

3

2

1

2 𝑎+

7

4

a b

−1

2

5

4 p

Page 8: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

7

Todo número racional puede escribirse como una expresión decimal cuya parte decimal puede

tener un número finito de cifras o puede tener un número infinito de cifras pero periódicas,

pura o mixta.

Supongamos que nos dan el número decimal 23,35 . Es una expresión decimal periódica mixta,

así que ya sabemos que es un número racional y por lo tanto se tiene que poder expresar como

una fracción (cociente de dos enteros). ¿Qué fracción es?

Para hallar esta fracción, existe una regla muy simple que podemos resumir así:

periódicas no decimales cifras como 0 y tantos periódicas decimales cifras como 9tantos

expresión) la de periódicas no cifras (las expresión) la de cifras las (todas

Aplicando esta regla al ejemplo, obtenemos: 23,35 = 2335−233

90=

2102

90

Y simplificando la fracción obtenemos: 23,35 = 1051

45

Otro ejemplo: 32,1427 = 321427−321

9990=

321106

9990=

160553

4995

Observación:

Siempre podemos verificar si la fracción que obtuvimos es correcta realizando la división y

verificando que el resultado coincide con la expresión decimal que teníamos.

Page 9: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

8

Recordemos como realizábamos las cuatro operaciones fundamentales:

Adición y Sustracción Multiplicación División

Igual denominador:

a c a c

b b b

, b 0

a c a c

b b b

Distinto denominador:

Cuando las fracciones tienen

distinto denominador se procede

a reemplazar a cada una de estas

por otras, respectivamente

equivalentes a las dadas, con

igual denominador. Luego se

suman o se restan como en el

caso anterior.

Ejemplo:

5 7 10 6 211

3 2 6 6 6

10 6 21 5

6 6

..

.

a c a c

b d b d , 0b d

Se multiplican los

numeradores y los

denominadores entre sí.

: .a c a d

b d b c o

.:

.

a c a d

b d b c

Ejemplo:

3 2 3 7 21: .

5 7 5 2 10

3 .73 2 21:

5 7 5.2 10

Inverso multiplicativo: Dos números racionales

(distintos del cero) son

inversos multiplicativos si

el numerador de uno es el

denominador del otro y

viceversa. De tal forma que

la multiplicación de ambos

es 1.

3 2 3 2 6 y donde . 1

2 3 2 3 6

Formalmente Definimos el

inverso de un número a 0

como el número racional

que multiplicado por a nos

da 1, es decir, 1

1aa

El inverso de 27

2a

es 1 2

27a pues

27 21

2 27

Page 10: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

9

Actividad 5: Completar el siguiente triángulo numérico con las fracciones que faltan.

Observación:

Veamos que estas expresiones son equivalentes:

a) 3

5= 3 ∙

1

5=

1

5+

1

5+

1

5

b) −3

8=

−3

8=

3

−8

Recordemos que si necesitamos buscar fracciones equivalentes a otras dadas para realizar una

suma es aconsejable buscar el mínimo común múltiplo (m.c.m.) entre los denominadores.

Actividad 6:

1) En una fábrica se oye, cada 20 segundos, el golpe de un martillo y cada 45 segundos, el

escape de la presión de una válvula. Si se acaban de oír ambos ruidos simultáneamente ¿cuánto

tiempo transcurrirá hasta que vuelvan a coincidir?

2) Calcular el mínimo común múltiplo de los siguientes números:

a) 15 y 20 b) 30 y 45 c) 4, 6 y 10 d) 12 y 18

3) Resolver las siguientes sumas algebraicas:

a) 7

30+

4

5−

8

45 b)

11

4−

5

6+

1

18−

9

10

Actividad 7: Si 𝑛 es un número racional, ¿es cierto que no existe ningún otro número racional

entre 𝑛 y 𝑛 + 1?

Si 𝑛 es un número entero, 𝑛 + 1 es el entero siguiente y no existe otro número entero entre

ellos. Pero, a diferencia del conjunto de los números enteros, en ℚ no tiene sentido hablar de

siguiente ni de anterior. Por ejemplo, si 𝑛 =1

2 no podemos afirmar que

1

2+ 1 =

32 sea su sucesor

inmediato pues existe el 1 o el 3

4 que están entre ellos y podríamos seguir encontrando otros

números racionales que cumplan con la misma condición.

1

1/2 1/2

1/3 1/3 1/6

1/4 1/4 1/12 1/12

1/30 1/20 1/20 1/5

1/6

1/7

1/30 1/60 1/60

Page 11: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

10

Esta propiedad se expresa diciendo que el conjunto ℚ es un conjunto denso, en contraposición

a los naturales ℕ y los enteros ℞ que, como ya dijimos, son conjuntos discretos.

Problema: ¿Cuáles son las medidas de los catetos de un triángulo rectángulo isósceles si se

sabe que su área es 6,5 𝑐𝑚2?

Como el triángulo es rectángulo isósceles, sus catetos son iguales por lo que el área que es de

6,5 cm2 queda expresada con la siguiente ecuación:

𝑥 ∙ 𝑥

2= 6,5 ⟺ 𝑥2 = 13

Esta ecuación no tiene solución en el conjunto de los números racionales ℚ, porque no existe

ningún número racional que elevado al cuadrado dé por resultado 13.

Aparece entonces un nuevo conjunto numérico, el de los números irracionales que se simboliza

con 𝕀. Los elementos de este conjunto tienen desarrollo decimal infinito no periódico.

El lado del triángulo anterior mide 13 y es un número irracional. Otros números irracionales

son:

6,12123123412345….

𝜋 = 3,14159254 …

−15,161718192021 …

73

Los números irracionales también tienen su ubicación en la recta numérica.

El conjunto formado por los números racionales y por los irracionales se llama conjunto de los

números reales que se simboliza ℝ.

Observemos que entre dos números racionales, 𝑎 y 𝑏 , 𝑎 < 𝑏, existe el racional 𝑎+𝑏

2 que

verifica: 𝑎 <𝑎+𝑏

2< 𝑏

Conclusión: entre dos racionales distintos a y b existen infinitos números racionales.

𝑥

𝑥

x

Page 12: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

11

ℝ = ℚ∪ 𝕀

Los números reales tienen la propiedad de llenar por completo la recta numérica, por eso se la

llama recta real.

Dado un origen y una unidad, a cada punto de la recta le corresponde un número real y, a cada

número real, le corresponde un punto de la recta.

PROPIEDADES DE LAS OPERACIONES EN ℝ

Suma y producto

Las operaciones de suma y producto definidas en ℝ cumplen ciertas propiedades. Veamos

algunas de ellas:

Sean 𝑎, 𝑏 y 𝑐 números reales cualesquiera.

Propiedades de la Suma del Producto

Ley de cierre a b ℝ a b ℝ

Asociativa a b c a b c * a b c a b c *

Conmutativa a b b a a b b a

Existencia de elemento neutro

Es el 0:

0 0a a a

Es el 1:

1 1a a a

Existencia de inverso

Es el opuesto aditivo:

( ) ( ) 0a a a a

Es el inverso multiplicativo:

1 11 0a a si a

a a

Distributiva del producto con

respecto a la suma a b c a c b c

ℕ ℞

𝕀 ℕ ⊂ ℞ ⊂ ℚ ⊂ ℝ

ℚ ∪ 𝕀 = ℝ

Page 13: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

12

Observación:

*La propiedad asociativa nos permite prescindir del uso de paréntesis y escribir simplemente

𝑎 + 𝑏 + 𝑐 ó 𝑎 ∙ 𝑏 ∙ 𝑐 .

Actividad 8: Decir si las siguientes afirmaciones son verdaderas o falsas. En caso de ser

verdaderas, mencionar las propiedades utilizadas.

a) 1

3∙ 5 + 4 =

4

3+

5

3

b) −2 ∙ 8

9− 5 = −2 ∙

8

9− 5

c) 2 + 𝑐 = 𝑐 + 2

d) 3 + 8 ∙ −9 = 3 + 8 ∙ 3 + −9

e) 1

𝑎∙ 𝑎 = 1,∀𝑎 ∈ 𝑅

f) Existe un número real 𝑥 para el cual 5

𝜋 + 𝑥 = 0

Potenciación

Si 𝑎 es un número real y 𝑛 es un número natural, entonces decimos que 𝑎𝑛 se obtiene

multiplicando 𝑛 veces el factor 𝑎, es decir:

...n

n veces

a a a a

Ejemplo: 𝑎3 = 𝑎 ∙ 𝑎 ∙ 𝑎

Decimos entonces que 𝑎𝑛 es una potencia que tiene 𝑎 como base y 𝑛 como exponente.

Extendemos la definición para exponentes enteros definiendo, para 𝑎 ≠ 0:

𝑎0 = 1

𝑎−𝑛 = 𝑎−1 𝑛 , 𝑛 ∈ ℕ

Actividad 9: Decir si los siguientes enunciados son verdaderos o falsos:

a) 28 = 22 ∙ 26 = 25 ∙ 23 f) −32 = −3 2

b) 8 + 3 2 = 82 + 32 g) 54 = 45

c) 8 ∙ 3 2 = 82 ∙ 32 h) 3

4 −2

=4−2

3−2

d) 23 2 = 25 i) 5−2 = −10

e) 23 2 = 26

La actividad anterior ejemplifica algunas de las siguientes propiedades de la potencia:

Page 14: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

13

Sean 𝑎, 𝑏 números reales distintos de 0 y sean 𝑚,𝑛 números enteros.

Propiedades de la Potencia

Distributiva con respecto al producto 𝑎 ∙ 𝑏 𝑚 = 𝑎𝑚 ∙ 𝑏𝑚

Distributiva con respecto a la división 𝑎

𝑏 𝑚

=𝑎𝑚

𝑏𝑚

Producto de potencias de igual base 𝑎𝑛 ∙ 𝑎𝑚 = 𝑎𝑛+𝑚

División de potencias de igual base 𝑎𝑛

𝑎𝑚 = 𝑎𝑛−𝑚

Potencia de potencia 𝑎𝑛 𝑚 = 𝑎𝑛∙𝑚

Como se vió en el ejercicio anterior la potencia no es distributiva con respecto a la suma ni a la

resta.

Actividad 10: ¿Qué sucede si a un número negativo lo elevamos a una potencia par? ¿Cuál es

el signo del resultado?

Radicación

Para los enteros positivos 𝑛 ya se ha definido la 𝑛-ésima potencia de 𝑏, a saber, 𝑏𝑛 . Ahora

vamos a utilizar la ecuación 𝑎 = 𝑏𝑛 para definir la 𝑛-ésima raíz de 𝑎.

La notación de la raíz cuadrada de 49 es 49. Su valor es

7 porque 72 = 49 y 7 > 0. Aun cuando −7 2 = 49, el

símbolo 49 se usa sólo con +7 y no con −7, así que se

tendrá un solo valor de 49. Claro que siempre es posible

escribir − 49 si se desea el valor negativo −7. Podemos

observar que −49 no tiene una raíz cuadrada real ya que

𝑏2 > 0 para todo número real 𝑏, por lo que 𝑏2 = −49 no

tiene solución en el conjunto de los números reales. En

general, la raíz cuadrada de 𝑎 se define como sigue, a

veces recibe el nombre de raíz cuadrada principal de 𝑎.

Si 𝑎 es un número real positivo, 𝑎 = 𝑏 si y sólo si 𝑎 = 𝑏2 y 𝑏 > 0

Además, 0 = 0.

Ejemplo: 25 = 5 , pues 52 = 25 (no es −5 ni ±5)

En el caso de las raíces cúbicas se puede utilizar tanto números positivos como negativos, así

como el cero. Por ejemplo, 23 = 8 y −5 3 = −125

Page 15: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

14

Se puede decir entonces que,

Si 𝑎 y 𝑏 son números reales cualesquiera, 𝑎3 = 𝑏 si y sólo si 𝑎 = 𝑏3

En particular, 03

= 0

Ejemplo: 3433

= 7 pues 73 = 343

−17283

= −12 pues −12 3 = −1728

Se puede ver que existe una diferencia básica entre las raíces cuadradas y las raíces cúbicas.

Las raíces cuadradas están definidas sólo para los números reales positivos y el cero. Las raíces

cúbicas están definidas para cualquier número real.

Lo mismo sucede con los enteros positivos mayores 𝑛: la distinción fundamental surge de si 𝑛 es

par o impar.

Si 𝑛 es un entero positivo par y 𝑎 y 𝑏 son números reales positivos tales que 𝑎 = 𝑏𝑛 ,

entonces se escribe 𝑎𝑛

= 𝑏.

Si 𝑛 es un entero positivo impar y 𝑎 y 𝑏 son números reales tales que 𝑎 = 𝑏𝑛 entonces se

escribe 𝑎𝑛

= 𝑏.

En cualquiera de los dos casos, 0𝑛

= 0. Además, 𝑎𝑛

se llama raíz 𝑛 -énesima de 𝑎.

El símbolo 𝑎 se utiliza sólo para representar 𝑎2

.

Observaciones:

𝑎𝑛

recibe el nombre de 𝑛 -énesima raíz principal de 𝑎 para indicar que 𝑎𝑛

se define

positivo si 𝑎 > 0.

El número 𝑎 es el radicando, es el signo radical, 𝑛 es el índice del radical y 𝑎𝑛

es la

expresión radical o raíz 𝑛 -énesima de 𝑎.

Veamos ahora las propiedades de la radicación, las cuales son análogas a las de la potenciación.

Sean 𝑎𝑎 y 𝑏𝑏 números reales positivos y 𝑛𝑛,𝑚 𝑚 números naturales:

Propiedades de la Radicación

Distributiva con respecto al producto 𝑎 ∙ 𝑏𝑛

= 𝑎𝑛 ∙ 𝑏

𝑛

Distributiva con respecto a la división 𝑎

𝑏

𝑛=

𝑎𝑛

𝑏𝑛

Raíz de raíz 𝑎𝑚𝑛

= 𝑎𝑛 ∙𝑚

Page 16: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

15

Actividad 11:

1) ¿Es posible aplicar la propiedad distributiva de la radicación respecto a la suma o a la

resta? Proponer ejemplos.

2) ¿Qué sucede al aplicar la propiedad distributiva al siguiente radical: −4 ∙ −16 ?

SIMPLIFICACIÓN DE RADICALES

Actividad 12: Efectuar las siguientes operaciones

a) 28 4

, 24 y 22

b) 32010 , 34 y 32

c) −2 6 y −2 3

Observemos que, en algunos casos se puede dividir el índice de la raíz y el exponente del

radicando por un mismo número sin alterar el resultado. A esta propiedad la llamaremos

simplificación de radicales.

Si el índice de la raíz es impar se puede simplificar siempre sin tener en cuenta el signo de la

base del radicando. Por ejemplo:

−2 5 5

= −2 (dividimos índice y exponente por 5)

2

3

217

= 2

3

3

(dividimos índice y exponente por 7)

Si el índice de la raíz es par, sólo se puede simplificar si la base es positiva, ya que si la base

fuera negativa podría presentarse el siguiente caso:

−2 44= −2 (si dividimos índice y exponente en 4) y en realidad, −2 44

= 164

= 2, vemos

que los resultados no coinciden. Por lo tanto:

Cuando el índice es PAR y el radicando es NEGATIVO, NO se puede simplificar...

Notemos que la única diferencia en el resultado es el signo y que las raíces de índice par dan

como resultado siempre un número positivo. Podemos entonces escribir: −2 44= −2 = 2,

donde el valor absoluto de un número 𝑎 se define de la siguiente manera:

𝑎 = 𝑎 𝑠𝑖 𝑎 ≥ 0−𝑎 𝑠𝑖 𝑎 < 0

Entonces podemos afirmar que:

Si 𝑛 𝑛 es impar, 𝑎𝑛𝑛= 𝑎 Si 𝑛𝑛 es par, 𝑎𝑛𝑛

= 𝑎

Page 17: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

16

Actividad 13: Descubrir los errores cometidos en el siguiente desarrollo.

9

43

9

2542

9

2516

2

4

3

5)8)(2(

2

12

5

382

)2(

12

2

2

2

8 8

4 8

Potencias de exponente fraccionario

Observemos las siguientes analogías:

236

aa y 23 6 aa

3515

aa y 35 15 aa

Estos ejemplos nos inducen a adoptar la siguiente definición para el caso de potencias de

exponente fraccionario:

𝑎𝑛

𝑚 = 𝑎𝑛𝑚 , donde 𝑎 ∈ ℝ+ , 𝑛 ∈ ℞ y 𝑚 ∈ ℕ

Actividad 14: ¿Cuándo es posible calcular una potencia de exponente fraccionario y base

negativa?

Recordemos como operar con radicales…

Adición y Sustracción de términos con radicales

Radicales expresados como raíces con igual índice y radicando

1. Se extrae factor común de todos los términos en los que aparezca el radical involucrado:

1 2 1 25 6 6 6 2 6. 5 2

3 5 3 5

2. Se suman y restan los números racionales:

1 2 766. 5 2 6 2

3 5 15

Este es el

resultado!!!

Page 18: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

17

Radicales expresados como raíces con distinto índice y/o radicando

3. Se descompone cada uno de los radicando, en forma de producto. Buscando que aparezca el

menor de los radicandos en todos los términos

8 2 72 2.4 2 2.36

4. Se aplica propiedad distributiva con respecto al producto

2.4 2 2.36 2. 4 2 2. 36

5. Se procede a resolver aquellas raíces cuyo resultado es un numero racional

2. 4 2 2. 36 2.2 2 2.6

6. Se extrae factor común el numero irracional de cada uno de los términos en los cuales aparece

2.2 2 2.6 2. 2 1 6

7. Se resuelve la suma algebraica de números racionales

2. 2 1 6 2.7 7 2

Observación:

Si no es posible encontrar como factor común un radical, no se puede resolver la operación

Multiplicación y división con radicales

Para multiplicar o dividir expresiones en las cuales aparecen números irracionales se procede a

agrupar, si existen, mediante la aplicación de propiedades, los números racionales por un lado y los

irracionales por otro.

Luego se procede a resolver las operaciones que correspondan en racionales y/o irracionales.

Ejemplo:

1 8. 5 8 5

8. 5 : 2. .20 21 1

2.20 20

Page 19: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

18

….lo cual puede escribirse….

8 5 1 1. 4. 5 : 4. 5 : 4. 100 4.10 40

2 20 201

20

Racionalización de denominadores

Cuando una expresión fraccionaria tiene indicado en el denominador un radical, resulta

ser conveniente modificar tal expresión- sin cambiar su significado-por otra cuyo

denominador sea racional. Este proceso recibe el nombre de racionalización del

denominador.

Trabajaremos únicamente dos casos:

1 Denominador con radical único: Multiplicamos numerador y denominador por un radical

que tenga:

igual índice que el que figura en el denominador.

radicando tal que al efectuar el producto de este con el radicando del radical que

existe, resulte una expresión (un número) que tenga como exponente un múltiplo

del índice (al cual pueda calculársele la raíz en racionales).

Ejemplo:

5 5 5 5 57 7 2 7 2 7 2 7 2 7 2 75 2

3 35 5 5 5 5 513 13 2 13 2 13 2 15

5 57 3 2 10 2

. . . . ..

. .

.

x x x x x x x x x x x xx

x xx x x x x x x

x x x x

2 Denominador de dos términos con uno o ambos con radicales de igual índice:

Multiplicamos numerador y denominador por el denominador de la expresión

original, cambiando la operación que separa en términos por la inversa de ésta.

Es decir, si los términos aparecían unidos por la operación de la suma, el que uso

para multiplicar debe tener una resta y viceversa.

Para multiplicar y/o dividir

radicales estos deben tener el

mismo índice.

Page 20: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

19

Aplicamos la siguiente propiedad: 2 2.a b a b a b .

Operamos teniendo en cuenta el conjunto numérico al cual pertenecen los

números.

Ejemplo:

2 2

15. 5 8 15. 5 8 15. 5 815

5 85 8 5 8 . 5 8 5 8

15. 5 85. 5 8

3

Actividad 15: Racionalizar los denominadores de las siguientes expresiones.

a) 5 32

8

= b)

43 35

7

= c) 53

5

Relaciones de orden en ℝ

Hasta ahora hemos definido ciertas operaciones en los números reales y analizado sus

propiedades. En esta sección lo que haremos es establecer un orden entre dos números reales

cualesquiera.

Dados dos números reales 𝑎𝑎 y 𝑏𝑏, se tiene sólo uno de los siguientes casos:

𝑎 < 𝑏 (se lee “𝑎 𝑎𝑎 es menor que 𝑏𝑏”, o “𝑏 𝑏 es mayor que 𝑎𝑎 𝑎”) 𝑏 < 𝑎 (se lee “𝑏 𝑏 es menor que 𝑎𝑎𝑎”, o “𝑎𝑎𝑎 es mayor que 𝑏 𝑏”) 𝑎 = 𝑏 (se lee “𝑎 𝑎𝑎 es igual a 𝑏 𝑏” o “𝑏 es igual 𝑎 ”)

Ejemplo: −8 < 1 ; 1

05 ; 2 3 .

Observaciones:

𝑎 < 𝑏 y 𝑏 > 𝑎 son expresiones equivalentes.

𝑎 ≤ 𝑏 a (se lee “𝑎 es menor o igual que 𝑏”) significa que 𝑎 < 𝑏 o bien 𝑎 = 𝑏.

Por ejemplo: 7 ≤ 9 y también 7 ≤ 7.

Page 21: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

20

Actividad 16:

a) ¿Cuántos números naturales hay entre −5 y 7?

b) ¿Cuántos números enteros hay entre −5 y 7?

c) ¿Cuántos números racionales hay entre −5 y 7? ¿Y cuántos números reales?

INTERVALOS DE NÚMEROS REALES

DEFINICIÓN: A un subconjunto de la recta real lo llamamos intervalo si contiene por lo menos

dos números reales y también todos los números reales entre dos de sus elementos.

Ejemplo:

a) A = {x ℝ / 6 < x < 8} es un intervalo.

b) B = {1, 2, 5, 8} no es un intervalo pues contiene a los números 1 y 2 pero no contiene a

ninguno de los números reales entre 1 y 2 como por ejemplo 3

2 ó 2 .

¿Cómo ubicamos a los números reales en la recta numérica?

Para ello debemos tener en cuenta que dados dos números reales el menor siempre deberá estar

ubicado a la izquierda del mayor. De esta manera:

Clasificación de intervalos:

Se llama intervalo abierto de extremos a y b al conjunto de los 𝑥 ∈ ℝ que están entre a y

b, sin considerar los extremos a y b. Escribiremos 𝑎, 𝑏 = 𝑥 ∈ ℝ/ 𝑎 < 𝑥 < 𝑏 . Gráficamente:

Se llama intervalo cerrado de extremos a y b al conjunto de los x que están entre a y b,

incluyendo los extremos a y b. Escribiremos 𝑎, 𝑏 = 𝑥 ∈ ℝ/ 𝑎 ≤ 𝑥 ≤ 𝑏 .Gráficamente:

Se llama intervalo abierto a la izquierda al conjunto de los 𝑥 tales que 𝑎 < 𝑥 ≤ 𝑏 .

Escribiremos 𝑎 , 𝑏 = 𝑥 ∈ ℝ/ 𝑎 < 𝑥 ≤ 𝑏 . Gráficamente:

( )

a b

[ ] a b

( ]

a b

8 1 0 3

2

Page 22: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

21

Se llama intervalo abierto a la derecha al conjunto de los 𝑥 tales que 𝑎 ≤ 𝑥 < 𝑏 .

Escribiremos 𝑎 , 𝑏 = 𝑥 ∈ ℝ/ 𝑎 ≤ 𝑥 < 𝑏 . Gráficamente:

Llamaremos intervalos infinitos a los siguientes conjuntos de puntos:

- 𝑥 ∈ ℝ/ 𝑥 > 𝑎 = 𝑎, +∞

- 𝑥 ∈ ℝ/ 𝑥 ≥ 𝑎 = 𝑎 , +∞

- 𝑥 ∈ ℝ/ 𝑥 < 𝑎 = +∞,𝑎

- 𝑥 ∈ ℝ/ 𝑥 ≤ 𝑎 = +∞ 𝑎

- ℝ= −∞, +∞

Observación:

A + y – no se los debe considerar como números; son solamente símbolos

convencionales que indican todos los números reales hacia la derecha o izquierda de un

número a fijo. Por esta razón, al expresar los intervalos nunca se debe usar corchetes

junto a los símbolos + y –.

Ejemplos:

1) El conjunto A = {x ℝ / x 0} es la unión de dos intervalos: A = (–, 0) (0, +).

2) Consideremos los siguientes conjuntos:

A = {x ℝ / –2 < x 5} = (–2, 5] y B = {x ℝ / 0 x} = [0, +)

Gráficamente:

Podemos ver que A B = {x ℝ / –2 < x 5 o 0 x} = {x ℝ / –2 < x} = (–2, +).

También podemos observar que: A B = {x ℝ / –2 < x 5 y 0 x} = {x ℝ / 0 x 5} = [0, 5].

Actividad 17: Considerar los siguientes intervalos: A = (–5, 0] y B = (2, 4). Expresarlos

utilizando desigualdades, representarlos en la recta numérica y hallar:

i) A B ii) A B iii) A iv) B

]

( a

[ a

) a

a

[ )

a b

( ]

[ 0

-2 5

Page 23: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

22

TRABAJO PRÁCTICO – NÚMEROS REALES

1) Completar con los símbolos , , ó según corresponda.

4 ........ ℕ

2 ........ 𝕀

ℕ ........ ℝ

{–2, , 0} ........ ℞

1

2 ........ ℚ

ℝ ........ ℝ

0,3 ........ 𝕀

ℕ ........ ℞ ........ ℚ ........ ℝ

2) Dado el conjunto 5

{12, , 7, 38, 571, , 0.6}3

S , encontrar:

a) S ℕ

b) S ℚ

c) S 𝕀 d) S ℞

Representar el conjunto S en la recta numérica en forma aproximada.

3) Decir si las siguientes afirmaciones son verdaderas o falsas:

a) La suma de dos números naturales es siempre un número natural.

b) La diferencia de dos números naturales es siempre un número natural.

c) El cuadrado de un número racional negativo es un racional positivo.

d) Existen infinitos números racionales comprendidos entre 0 y 1

2.

e) El conjunto de los números naturales carece de primer elemento.

4) Responder:

a) Si m = 14, ¿cómo pueden representarse los números 13, 15 y 16 en términos de m?

b) Sea n un número par cualquiera, ¿cuál es el siguiente entero par? ¿Cuál el anterior?

c) Si x representa cualquier entero impar, ¿cuál es el siguiente entero impar? ¿Cuál el

anterior?

d) Si x es cualquier entero par, ¿x + 1 es un entero par o impar? ¿Y x – 1?

e) Si x es cualquier entero, ¿2x es par o impar? ¿Y 2x – 1? ¿Y 2x + 1?

5) Indicar si las siguientes afirmaciones son verdaderas o falsas. Justificar la respuesta

proponiendo un contraejemplo, en caso de ser falsa, o enunciando las propiedades aplicadas,

en caso de ser verdadera.

a) si a = –2 y b = 0, entonces a : b = 0

b) (–a) (–b) = –(a . b)

c) el cociente entre un número y su

opuesto es igual a –1

d) a + (–b + c) = a – b + c

e) el inverso de 2 es −1

2.

f) a : (b + c) = a : b + a : c,

siendo b + c 0, b 0 y c 0

Page 24: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

23

g) b – [–c (2 – 1) – 1] = b

h) a – (b + c) = a – b + c

i) (b + c) : a = b : a + c, con a 0

j) para todo a ℝ, a : 1a = 1

k) para todo a ℝ , aa 11)(

l) a (–b) = a b

m) a (b – c) = a b – a c

n) la ecuación 2x = 1 tiene solución en ℞

o) –(–a) = a

6) Calcular:

1) (5 + 3)2 = .......... 52 + 32 = ..........

2)

4

13

2..........

44

13

2 ..........

3) (–2)3 = .......... 3–2 = ..........

4) 23)2( = .......... 23)2( = ..........

7) Completar con = ó y mencionar qué propiedades se cumplen o no se cumplen:

a) (a + b)n .......... an + bn

b) ab .......... ba

c) cba ..........

cba )(

d) aqp )( .......... aa qp

8) Resolver aplicando propiedades de la potenciación:

a)

2

3

2

2

1

b)

6

332

6

23

c)

6

5

13

2

aaaa

d)

5

13

32

12

))(3(2

db

bddb

e)

4

3

12

5

)5(:2.0

9) En los siguientes cálculos se han cometido errores al aplicar las propiedades. Indicar cuáles

son y corregirlos.

a) 16242532 22222

b) 155:55:5 0662342

c)

497

7

77

7

77 2

18

124

29

624

d) 251427 00

10) Aplicar las propiedades de potenciación para demostrar que:

a) 41242222

aaa

b) 83:33332321 nnn

c) 10002:2103131 nn

d) 322222 212 nnn

Page 25: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

24

11) Determinar si han sido resueltos en forma correcta los siguientes ejercicios y justificar:

a) 6329494

b) 636)9()4(94

c) 416)8()2(

d) 743169

e) 525169

f) 288

648:64 3333

12) Indicar si las siguientes afirmaciones son verdaderas o falsas:

a) Si x es un número real, entonces .2 xx

b) Si x es un número real, entonces .2 xx

c) Si x es un número real, entonces .3 3 xx

d) Si x es un número real, entonces .3 3 xx

13) Unir con flechas las expresiones iguales, siendo 𝑎, 𝑏 𝜖 ℝ+ :

3 95 21664 ba ab3

25

400 4

4 879 cba 3 2324 aab

4 2242

2

81

16

2

1

3

55 ba

a

baab 4 322 abbca

14) Calcular:

a) 25.016 c)

6

1

3

1

2

22 e)

2

2

1

2

1

33

b) 25.016 d)

1

3

1

3

2

5

55

f)

2

13

1

2

1

5

3

15) Expresar como potencia de exponente fraccionario y calcular:

a)

2

8

13

113

= d)

4

216 325.0

g)

27125

35 3

b)

3 5

2

7

7

17

e) 4 273 h) 3 a

aa

Page 26: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

25

c) 3 a

aa f)

5

4

8

22

16) Demostrar que: 2

1

2

1

2

1

2

1ba

ba

ba

.

17) Expresar el subconjunto de los números reales que satisface las condiciones siguientes como

un intervalo o unión de intervalos:

x 4 y x < 5

x < 2 y x –3

x > –5 o x < –6

x –1

x > –2

x < 2 o x 4

18) a) Determinar el conjunto de los números naturales que satisfacen –3 x < 7.

b) Determinar el conjunto de los números enteros que satisfacen - x e.

Page 27: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

26

POLINOMIOS

Alguna vez en la escuela media, en clases de Física, hemos visto expresiones tales como

𝑠𝑡 = 𝑣. 𝑡 + 𝑠0 que representa la relación posición (s) de un móvil, que se desplaza en movimiento

rectilíneo uniforme, en función del tiempo (t). O del movimiento uniformemente variado, donde

la expresión utilizada es 2

002

1attvsst .

En Economía, suele utilizarse expresiones como 𝐶 = 600𝑥2 + 320𝑥 + 150 que representa, por

ejemplo, el costo total de construir un depósito de materiales.

Es necesario, entonces estudiar las expresiones de la forma:

𝑃 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯+ 𝑎𝑛𝑥

𝑛 (1)

Que llamaremos polinomios, donde los 𝑎0, 𝑎1, 𝑎2,… ,𝑎𝑛 se llaman coeficientes y son números

reales o complejos (nosotros sólo trabajaremos con reales); x es la indeterminada y los

exponentes de x son todos enteros no negativos.

Actividad 1: Indicar cuáles de estas expresiones son polinomios reales (con coeficientes reales)

a) 2

5

1x b) 453 32 xx c) 5. 𝑥−1 + 𝑥4

d) 3. 𝑠𝑒𝑛(2𝑥) e) 4𝜋𝑥4 + 2𝜋𝑥2 + 𝜋 f) 7 −1

𝑥

g) 10 h) 2𝑥 − 3𝑥 + 4𝑥 i) 443 xxx

Al conjunto de todos los polinomios en la indeterminada x con coeficientes reales lo

simbolizaremos ℜ 𝑥 .

En la expresión (l) el coeficiente 𝑎0 es el término independiente, y el coeficiente 𝑎𝑛 es el

coeficiente principal, si 𝑎𝑛 ≠ 0.

Si 𝒂𝒏 ≠ 𝟎 , y 𝒂𝒌 = 𝟎 para todo nk diremos que n es el grado de P(x) y escribiremos

nxPgr .

Si 1na el polinomio se llama mónico.

Por ejemplo, en 425)( 3 xxxP el grado es 3; xxQ 4)( es de grado 1; xxxxV 463)( 72

es de grado 7 y S(x) = 23 es de grado 0.

El polinomio nulo es aquél donde todos los coeficientes son 0. No está definido el grado del

polinomio nulo.

Page 28: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

27

Según el número de términos con coeficientes no nulos, el polinomio se llama monomio,

binomio, trinomio,....

En el ejemplo precedente, S(x) es un monomio, Q(x) es binomio, P(x) y V(x) son trinomios.

Actividad 2: Ejemplificar: a) binomio de tercer grado b) monomio de quinto grado

c) trinomio de cuarto grado d) monomio de grado cero

Definición:

Dados dos polinomios P y Q decimos que son iguales si y sólo si los coeficientes de los términos

de igual grado son iguales, por ejemplo 𝟑 − 𝒙𝟑 + 𝟕𝒙𝟒 − 𝟒𝒙𝟓 = 𝟑 + 𝟎𝒙 + 𝟎𝒙𝟐 − 𝒙𝟑 + 𝟕𝒙𝟒 − 𝟒𝒙𝟓.

Al polinomio del segundo miembro se lo llama completo, porque siendo de grado 5, se escriben

todos los términos de grado igual o menor que 5 colocando coeficiente 0 en los términos que

faltan.

Actividad 3: Determinar los valores de m, n, r y s para que T(x) = G(x)

a) 52

2

1253)( xxxxT ; 532 )()(

3

4)2()( xsnxrxrsxmnmxG

b) 432 8242723)( xxxxxT ; 4232 )()(3)( xnxsrmxrnmxxG

Operaciones con Polinomios

Veremos las operaciones con polinomios y las propiedades que éstas verifican.

AAddiicciióónn

La suma del polinomio 𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯+ 𝑎𝑛−1𝑥

𝑛−1 + 𝑎𝑛𝑥𝑛 y el polinomio

𝐵 𝑥 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯+ 𝑏𝑛−1𝑥

𝑛−1 + 𝑏𝑛𝑥𝑛 + ⋯+ 𝑏𝑚𝑥𝑚 donde n m, es el polinomio:

𝐴 𝑥 + 𝐵 𝑥 = 𝑎0 + 𝑏0 + 𝑎1 + 𝑏1 𝑥 + 𝑎2 + 𝑏2 𝑥2 + ⋯+ 𝑎𝑛−1 + 𝑏𝑛−1 𝑥

𝑛−1 + 𝑎𝑛 + 𝑏𝑛 𝑥𝑛 + ⋯+ 𝑏𝑚𝑥𝑚

Ejemplo: 5452 473)( ; 2

1253)( xxxxBxxxxA

A(x) + B(x) = (3 + 3) + (5 1)x + (2 + 0) x2 + (0 + 7)x4 + (1/2 4)x5

A(x) + B(x) = 6 6x + 2x2 + 7x4 9/2 x5

En la práctica puede adoptarse esta disposición en la que se encolumnan los términos de igual

grado (llamados términos semejantes).

Page 29: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

28

542

54

52

2

97266

4732

1253

xxxx

xxx

xxx

Para poder enunciar alguna conclusión sobre el grado del polinomio suma resolver:

43 221 xxxxA ; 22 2 xxxB ; 234 32 xxxxC ; y 322 34 xxxxD

A(x) + B(x) = .............................................................................gr (A+B) = .....................

A(x) + C(x) = .............................................................................gr (A+C) = .....................

A(x) + D(x) = .............................................................................gr (A+D) = .....................

El grado del polinomio suma A + B es ………………………… que el grado del polinomio de

mayor grado entre los polinomios sumandos.

La suma de polinomios goza de las mismas propiedades que la suma de números.

Actividad 4: Dados los polinomios 43 221)( xxxxA ; 22)( 2 xxxB ; 32

1)( 2 xxxF

a) ¿Existe elemento neutro para la suma de polinomios? ¿Cuál es?

b) ¿Todo polinomio tiene un opuesto, o inverso aditivo? ¿Cuál es?

Recordar que para todo polinomio A(x) existe otro K(x) tal que A(x) + K(x) da por resultado

el polinomio nulo. Se dice que K(x) es el opuesto de A(x) y se lo representa como A(x).

Hallar, entonces, los opuestos de A(x), B(x) y F(x).

SSuussttrraacccciióónn

Dados los polinomios A(x) y B(x), efectuar la sustracción (resta o diferencia) entre A(x) y B(x)

equivale a sumar a A(x) el opuesto de B(x).

Por ejemplo: Si 232)( 345 xxxxA y 353)( 24 xxxB . Entonces 353)( 24 xxxB

Por lo tanto: )353()232())(()( 24345 xxxxxxBxAxBxA

153 2345 xxxxxBxA

Page 30: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

29

Actividad 5:

1) Dados 34 82)( xxxxF , 432)( xxxG , 122)( 43 xxxxH , hallar:

a) F(x) + G(x) H(x)

b) F(x) G(x) H(x)

c) F(x) (G(x) H(x))

2) Siendo 432 8242723)( xxxxxT y 23 22442)( xxxxJ , resolver:

a) T(x) + J(x) b) T(x) J(x) c) J(x) T(x)

3) Hallar V(x) tal que W(x) V(x) = Y(x) , si 3423

1)( xxxW y 14

3

2)( 23 xxxxY

Producto

Al multiplicar dos monomios, el resultado es otro monomio.

Por ejemplo: si 𝐴 𝑥 = 6𝑥3 y 𝐵 𝑥 = 4𝑥5 , entonces 𝐴 𝑥 ∙ 𝐵 𝑥 = 6𝑥3 ∙ 4𝑥5 = 6 ∙ 4 ∙ 𝑥3 ∙ 𝑥5 = 24𝑥8

Si 𝐴 𝑥 = 6𝑥3 y 𝐿 𝑥 = −3𝑥4 , entonces 𝐴 𝑥 ∙ 𝐿 𝑥 = 6 ∙ −3 ∙ 𝑥3 ∙ 𝑥4 = −18𝑥7

El coeficiente del producto es el producto de los coeficientes de los factores. El grado del

monomio producto es la suma de los grados de los factores, si estos no son nulos. Si alguno de

los factores es el polinomio nulo, el producto es el polinomio nulo.

Para calcular el producto de dos polinomios, multiplicamos cada término (monomio) de uno de

ellos por cada uno de los términos (monomio) del otro.

Si n

n

n

n xaxaxaxaaxA

1

1

2

210 ...... y m

m

m

m xbxbxbxbbxB

1

1

2

210 ......

Entonces:

m

m

m

m

n

n

n

n xbxbxbxbbxaxaxaxaaxBxA 1

1

2

210

1

1

2

210 ............

m

m

m

m

n

n

m

m

m

m

n

n

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

n

n

n

n

xbxbxbxbbxa

xbxbxbxbbxaxbxbxbxbbxa

xbxbxbxbbxaxbxbxbxbba

xbxbxbxbbxaxaxaxaa

1

1

2

210

1

1

2

210

1

1

1

1

2

210

2

2

1

1

2

2101

1

1

2

2100

1

1

2

210

1

1

2

210

......

..................

............

............

Page 31: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

30

Por ejemplo, si 12)( 3 xxxA y 43)( 2 xxxB , entonces resulta:

12()()( 3 xxxBxA )∙( 43 2 xx ) = 432 23 xxx 43 2 xxx 431 2 xx =

= 4343826 223345 xxxxxxxx =

= 454526 2345 xxxxx

Si queremos utilizar la disposición práctica:

454526

)(.143

)(.43

)(.2826

43

12

2345

2

23

3345

2

3

xxxxx

xBxx

xBxxxx

xBxxxx

xx

xx

Para deducir el grado del polinomio producto resolvemos los siguientes ejemplos.

Actividad 6: Considerar M(x) = x + 3, G(x) = x 2 + 2x 1, B(x) = 2x 3 x + 2 y calcular:

M(x) ∙ G(x) = ...............................................................................gr (M ∙ G) :...................

M(x) ∙ B(x) = ............................................................................. ..gr (M ∙ B) :..................

G(x) ∙ B(x) =.................................................................................gr (G ∙ B) :..................

El grado del polinomio producto es igual a ……………… de los grados de los polinomios factores.

El coeficiente principal del polinomio producto es …………………….. de los coeficientes

principales de los polinomios factores.

El término independiente del polinomio producto es ……………………. de los términos

independientes de los polinomios factores.

La multiplicación de polinomios verifica la ley de cierre (el producto de dos polinomios es otro

polinomio).

Actividad 7:

1) Dados los polinomios T(x) = 2 x + 1/2x 2 , V(x) = x 2, W(x) = x + 1 + x2,

a) Comprobar que T(x) . (V(x) + W(x)) = T(x) V(x) + T(x) W(x)

Page 32: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

31

b) Calcular V 2, W 2, V 3.

2) Con los polinomios 324 3752)( xxxxA , 13)( xxB , 35 32)( xxxC calcular:

a) C(x) A(x) ∙ B(x) b) 3A(x) + 2x3 B(x) c) [B(x)]2 2A(x)

División

Si deseamos determinar los números enteros c y r que satisfacen la ecuación 9 = 4c + r,

podemos efectuar la división entera mediante el correspondiente algoritmo:

donde 9 es el dividendo, 4 el divisor, 2 es el cociente y 1 es el resto. Entonces, c = 2 y r = 1 son

los únicos números enteros que verifican la igualdad 9 = 4 ∙ 2 + 1, teniendo en cuenta que

0 ≤ r < divisor. Además recordamos que el divisor nunca es cero. Esto que sucede en el conjunto

de los números enteros es muy similar a lo que ocurre con los polinomios.

Para hallar los polinomios C(x) y R(x) que satisfacen la ecuación

)()().2(4423 2334 xRxCxxxxx

podemos realizar la división de polinomios. El polinomio C(x) se llama polinomio cociente y el

polinomio R(x) se llama polinomio resto. El polinomio divisor nunca puede ser el polinomio

nulo y el grado de R(x) debe ser menor que el grado del divisor o R(x) = 0.

El cociente y el resto de dividir un polinomio por otro no nulo se calculan mediante un

algoritmo similar al de la división de números enteros. Ejemplificaremos cada paso con el

polinomio 4423 34 xxx dividido por 23 2xx :

1º: Se ordenan según las potencias decrecientes de la indeterminada (x), el dividendo y el

divisor; completando además el dividendo.

En el ejemplo, ambos polinomios están ordenados, pero hay que completar el dividendo:

44023 234 xxxx

2º: Dividimos el primer término del dividendo con el primer término del divisor, obteniéndose

así el primer término del cociente.

En el ejemplo:

x

xxxxxx

3

244023 23234

3º: Multiplicamos el primer término del cociente por todo el divisor. En el ejemplo:

xxx

xxxxxx

363

244023

34

23234

9 4

1 2

Page 33: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

32

4º: Se resta este producto del dividendo, obteniéndose un nuevo dividendo.

En el ejemplo:

23

34

23234

08

363

244023

xx

xxx

xxxxxx

5º: Reiteramos el procedimiento 2º, 3º y 4º hasta obtener el polinomio resto, de grado menor que

el divisor.

En el ejemplo:

4416

168

08

8363

244023

2

23

23

34

23234

xx

xx

xx

xxx

xxxxxx

Y como 24416 2 xxgr y 32 23 xxgr , quedan entonces determinados el polinomio

cociente 83)( xxC y el polinomio resto R(x) = 16x 2 4x 4 que verifican:

4423 34 xxx (x 3 2x 2) (3x + 8) + (16x 2 4x 4)

Planteamos otro ejemplo. Queremos efectuar A : B siendo 12)( 3 xxxA y 1)( 2 xxxB .

En el ejemplo anterior, restábamos el producto de cada monomio por el divisor. En este ejemplo

procederemos de otra manera, sumando el opuesto del polinomio obtenido en cada paso.

1

222

132

22 222

1102

2

2

23

223

x

xx

xx

xxxx

xxxxx

Luego: 12 3 xx = ( 12 xx ) (2x + 2) + ( x 1)

Actividad 8:

1) Dados A y B determinar C y R tal que A = B∙ C + R, donde R(x) = 0(x) o gr (R) < gr (B)

a) 12)( 23 xxxxA 1)( xxB

b) 123)( 24 xxxA 22)( xxB

c) 1)( 23 xxxxA 1)( 2 xxB

d) 32)( 2 xxxA 23)( xxB

Page 34: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

33

e) 32)( 2 xxxA 32)( xxB

f) 44)( xxA 2)( 2 xxxB

2) a) Hallar el polinomio A(x) (dividendo), sabiendo que el divisor es B(x) = 3x 1, el cociente

es C(x) = x 2 2

1 x + 1 y el resto es R(x) = 5.

b) Hallar el polinomio divisor B(x) siendo el dividendo 1043)( 23 xxxxA , el cociente

C(x) = x + 2 y el resto R(x) = 2.

Cuando tenemos que dividir un polinomio P(x) por un polinomio mónico (coeficiente principal

igual a 1) de grado uno, conviene utilizar un algoritmo llamado Regla de Ruffini. Este es un

procedimiento que permite hallar el cociente y el resto sin efectuar la secuencia que describimos

anteriormente. Recordemos que únicamente puede usarse la regla de Ruffini si el divisor es

un polinomio de la forma ax , siendo a un número real cualquiera.

Ejemplificaremos dicho procedimiento efectuando la división entre A(x) = 3x 3 + 7x 2 + 6x 1 y

B(x) = x + 2

La disposición práctica requiere que en el primer renglón se escriban los coeficientes del

dividendo ordenado y completo hasta el término independiente inclusive. En el ángulo se

escribe el opuesto de a, que figura en el divisor (su raíz).

3 7 6 1

2 6

3 1

3 7 6 1

2 6 2

3 1 4

3 7 6 1

2 6 2 8

3 1 4 9

El resto es 9, siempre es una constante. Los valores 3, 1 y 4 son los coeficientes del polinomio

cociente ordenado y completo, cuyo grado es una unidad menor que el grado del dividendo.

Entonces 413 3 xxxC .

El coeficiente principal del dividendo (3)

se copia abajo. Se lo multiplica por 2 y

el resultado (6) se escribe debajo del

siguiente coeficiente del dividendo (7). Se

suma 7 y 6 y el resultado (1) se escribe

abajo.

El 4 obtenido en el paso anterior reinicia el

ciclo: se lo multiplica por 2 y el resultado

(8) se escribe debajo del último coeficiente

del dividendo (1). Se suman 1 y 8, y el

resultado (9) es el resto. Se escribe abajo.

El 1 obtenido en el paso anterior reinicia el

ciclo: se lo multiplica por 2 y el resultado

(2) se escribe debajo del siguiente

coeficiente del dividendo (6). Se suman 2 y 6

y el resultado (4) se escribe abajo.

Page 35: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

34

Según el algoritmo de la división podemos escribir:

3x 3 + 7x 2 + 6x 1 = (x + 2) (3x 2 + x + 4) 9.

Actividad 9:

1) En la Actividad 8.1), identificar las divisiones en que se puede aplicar la regla de Ruffini,

resolver mediante este método y verificar los resultados anteriores.

2) Obtener mediante la regla de Ruffini el cociente y el resto de la división entre A(x) y B(x).

a) 1426)( 23 xxxxA B(x) = x + 2

b) 32 334128)( xxxxA B(x) = x 4

c) 42)( 24 xxxA B(x) = x + 3

d) 43)( aaxxA B(x) = x ½

3) Para resolver las siguientes divisiones aplicando la regla de Ruffini, hay que recordar que si

se multiplican (dividen) el dividendo y el divisor por un número distinto de cero, el cociente

no varía pero el resto queda multiplicado (dividido) por dicho número.

a) 12)( 3 xxxA B(x) = x + 2

b) 4826)( 23 xxxxA B(x) = 2x 1

c) 863)( 2 xxxA B(x) = 3x 6

Divisibilidad de Polinomios

Si al realizar la división entre A(x) y B(x), con 0)( xB , el resto es el polinomio nulo, decimos

que A(x) es divisible por B(x), o que B(x) divide a A(x).

B(x) divide a A(x) si y sólo si existe un polinomio K(x) tal que K(x)∙ B(x) = A(x).

Por ejemplo, si queremos ver si A(x) = x 2 5x + 6 es divisible por B(x) = x 2, podemos dividir

utilizando la regla de Ruffini:

1 -5 6

2 2 -6

1 -3 0

Como R(x) = 0, entonces A(x) es divisible por B(x).

Para analizar si A(x) = x 5 x 3 + x 2 2x + 1 es divisible por B(x) = x 2 + 1, usamos el algoritmo

conocido ya que, no puede aplicarse la regla de Ruffini.

Page 36: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

35

0

1

1

22

22

12

1120

2

2

3

23

335

22345

x

x

xx

xxx

xxxx

xxxxxx

Como R(x)=0, A(x) es divisible por B(x).

Observemos que en el algoritmo, en lugar de restar el polinomio obtenido en cada paso, se sumó

su opuesto, como ya hicimos antes.

Actividad 10: Averiguar si A(x) es divisible por B(x).

a) 10291832)( 367 xxxxxA B(x) = 2x 2 + 3x

b) 635 162)( xxxxA B(x) = x2 +2x

c) 151096)( 246 xxxxA B(x) = 2x 2 3

Veremos otro modo de averiguar la divisibilidad de un polinomio por otro de la forma (x a)

(siendo a un número real cualquiera).

Para ello debemos definir el valor numérico de un polinomio:

Dado un polinomio P(x) llamamos valor numérico de P(x) para x = a, con a R, al número que

se obtiene reemplazando x por a y efectuando los cálculos.

Ejemplos: En P(x) = x 2 5x + 6,

P(1) = 12 5 . 1 + 6 = 2

P(2) = 22 5 . 2 + 6 = 0

P(1) = (1)2 5 . (1) + 6 = 12

En P(x) = x 4 8,

P(2) = (2) 4 8 = 8

P(0) = 0 4 8 = 8

En P(x) = 5 ,

P(3) = 5 P(-2) = 5 P( 5 ) = 5

Actividad 11: En los polinomios 32

12)( 2 xxxA , 1)( 23 xxxH , 4)( 2 xxT , calcular:

a) A(1), b) H(2), c) T( 2 ), d) H(0), e) T(-3)

Page 37: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

36

Decimos que x = a es raíz de un polinomio P(x) si y solo si P(a) = 0.

Por ejemplo, x = 1 es raíz de P(x) = x 5 x 3 porque P(1) = 1 5 1 3 = 0.

También x = 1 es raíz de P(x), porque P(1) = (1) 5 – (1) 3 = 1 + 1 = 0.

Si realizamos la división de un polinomio P(x) por (x a) donde a es un número real y R

también es una constante:

P(x) x a

R C(x)

Entonces

P(x) = (x a) C(x) + R

Si x = a, reemplazamos en y resulta: P(a) =

0

)aa( C(a) + R P(a) = R

Enunciamos, entonces, el Teorema del Resto:

El resto de la división de un polinomio P(x) por otro de la forma x a, es igual a P(a).

Si queremos saber si un polinomio P(x) es divisible por otro de la forma x a, bastará hallar

P(a). Si P(a) = 0, entonces P(x) es divisible por x a.

Averigüemos si A(x) = x 2 5x + 6 es divisible por B(x) = x 2, utilizando el teorema del resto:

A(2) = 22 – 5 . 2 + 6 = 0 A(x) es divisible por B(x).

Actividad 12:

1) Analizar si A(x) es divisible por B(x), aplicando teorema del resto.

a) 8)( 3 xxA B(x) = x + 2

b) 22)( 23 xxxxA B(x) = x 2

c) 65)( 2 xxxA B(x) = x 3

2) Halla k para que B(x) sea divisor de A(x)

a) 4)( 23 kxkxxxA B(x) = x 1

b) kxkxxkxxA 234)( B(x) = x – ½

Page 38: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

37

Factorización de Polinomios

Cuando expresamos un número entero como producto de otros, decimos que estamos

factorizando ese número. Por ejemplo, 120 se puede escribir como 12∙ 10 pero, ¿éstos serán los

únicos factores que puedo encontrar o, podré seguir factorizándolo? La respuesta es sí, veamos

que,

120 = 12 ∙ 10

Pero también, 120 = 6 ∙ 2 ∙ 2 ∙ 5

y, 120 = 3 ∙ 2 ∙ 2 ∙ 2 ∙ 5 es decir, 120 = 3 ∙ 23 ∙ 5

En esta última forma de factorizarlo vemos que 120 quedo expresado como producto de

números primos, por lo que ya no podremos encontrar otra factorización que involucre números

positivos más pequeños que los hallados y diremos que esa factorización en números primos es

única, salvo el orden de los factores.

De la misma manera, cuando expresamos un polinomio P(x) como producto de una contante por

otros polinomios diremos que lo estamos factorizando y cada uno de esos nuevos polinomios

será un factor de P(x). Además, las raíces de cada uno de ellos también serán raíces de P(x).

Por ej, analicemos el polinomio 𝑃 𝑥 = 𝑥4 − 𝑥3 − 4𝑥2 − 2𝑥 − 12

Si evaluamos al polinomio en 𝑥 = −2, 𝑃 −2 = 0 lo que significa que 𝑥 = −2 es raíz de P.

Así, podríamos reescribir a 𝑃 𝑥 = 𝑥3 − 3𝑥2 + 2𝑥 − 6 𝑃1(𝑥)

𝑥 + 2

Pero, ¿P tendrá más raíces reales? Es decir, ¿los factores que intervienen en la factorización de

P tendrán raíces reales?

Sea, 𝑃1 𝑥 = 𝑥2 + 2 𝑃2 (𝑥)

𝑥 − 3

Vemos que 𝑥 = 3 es raíz de 𝑃1, que es uno de los factores de 𝑃 por lo que 𝑥 = 3 también es raíz

de P y vemos también que 𝑃2(𝑥) no tiene raíces reales por lo que

𝑃 𝑥 = 𝑥2 + 2 𝑥 − 3 𝑥 + 2

estaría así, totalmente factorizado en ℝ 𝑥 .

Si al escribir un polinomio como producto hay más de un factor que tiene la misma raíz, a ésta

se la llama raíz múltiple.

En )5()2()2()( xxxxQ , x = 2 es una raíz doble de Q. Si M(x) = (x + 3) (x + 3) (x + 3), x = 3

es raíz triple de M(x).

Se llama orden de multiplicidad de la raíz a del polinomio P(x) a la cantidad de veces que

está el factor ax en la factorización de P(x).

En )5()1()5()1()1()( 2 xxxxxxQ , el orden de multiplicidad de la raíz x = 1 es 2.

En M(x) = (x + 2) (x + 2) (x + 2) = (x + 2)3, el orden de multiplicidad de la raíz x = 2 es 3.

Page 39: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

38

Un polinomio de grado n tiene como máximo n raíces reales:

Si el polinomio es de grado impar tiene como mínimo una raíz real.

Si el polinomio es de grado par, o no tiene raíces reales o tiene una cantidad par de ellas.

Queremos ahora descomponer un polinomio en factores. Vamos a recordar algunas técnicas.

Factor Común

Si en un polinomio, la indeterminada x figura en todos los términos, es conveniente sacar factor

común. También puede extraerse un número que es factor en todos los coeficientes.

Ejemplos: )6(3183)( 2 xxxxxP

)23(2462)( 22234 xxxxxxxF

)1()( 223 xxxxxG

H(x) = 10x 3 25 = 5 (2x 3 5)

Siempre es posible controlar que el producto que obtuvimos es correcto aplicando la propiedad

distributiva.

Diferencia de Cuadrados

Recordemos que una diferencia de cuadrados puede escribirse como producto

x2 a2 = (x + a)∙(x a).

Cuando se presenta la resta de dos términos y cada uno de ellos es una potencia cuadrada,

puede expresarse como el producto entre la suma y la diferencia de las bases de esas potencias.

Ejemplos: )5()5(25)( 2 xxxxJ

)6)(6(36)( 224 xxxxK

)32()32()94()94()94(8116)( 2224 xxxxxxxL

Muchas veces es posible combinar las diferentes técnicas para factorizar polinomios:

)3()3()9(9)( 22224 xxxxxxxxD

Actividad 13: Expresar cada E(x) como productos de polinomios del menor grado posible:

a) 23 2)( xxxE b) 26)( xxxE c) xxxE 123)( 3

Factor común por grupos

Algunos polinomios presentan una estructura que permite formar grupos de igual cantidad de

términos y sacar factor común en cada uno de esos grupos. Una vez hecho esto, aparece un

nuevo factor común. Veamos en un ejemplo:

Page 40: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

39

)57(2)57()1014()57(101457 44545 xxxxxxxxxxV

En los dos términos que se obtienen, 7x 5 es factor común. Entonces el polinomio queda

factorizado: )2()57( 4 xxxV

Otros ejemplos:

a)

)1()23()23()23(

)23()23(2323)(

52323235

2357823578

xxxxxxxx

xxxxxxxxxxxW

b)

)1()1()1(1)1(

)1()(1)(

42224

246246

xxxxx

xxxxxxxY

Pero aún podemos descomponer ambas diferencias de cuadrados:

)1()1()1(

)1()1)(1()1()1()1()1()1()1()(

222

222

xxx

xxxxxxxxxxY

Es importante recordar que la potenciación NO es distributiva respecto de la suma ni de la

resta.

(x + 1)2 x2 + 1 (x 1)2 x2 1

Trinomio Cuadrado Perfecto

Recordemos que el resultado de elevar un binomio al cuadrado es un trinomio:

222 2)( aaxxax

Donde un término es x2; otro es a2 y en otro aparece el doble del producto entre x y a.

A este trinomio se lo llama trinomio cuadrado perfecto, porque proviene del cuadrado de un

binomio.

Analicemos los siguientes ejemplos:

a) C(x) = x 2 + 10x + 25

(x) 2 (5) 2

2 . x. 5 entonces C (x) = (x + 5) 2

b) G(x) = 9x 2 6x + 1

(3x) 2 (1) 2

Page 41: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

40

2 . 3x . 1 entonces G(x) = (3x 1) 2 ó G(x) = (3x + 1)2

c) L(x) = 100x4x25

1 36

2

3x5

1

(10) 2

10.x5

1.2 3 entonces

2

3 105

1)(

xxL

Cuatrinomio Cubo Perfecto

Ya hemos visto que 32233 33)( axaaxxax ()

Entonces al polinomio 8126)( 23 xxxxM lo comparamos con ()

(x) 3 (2) 3

3.(x) 2.2

3.x.(2)2

Y resulta M(x) = (x + 2) 3

Actividad 14: Factorizar los siguientes polinomios:

a) 4

1)( 2 xxxP

c) 234 2)( xxxxP

b) 133)( 369 xxxxP d) 8126)( 23 xxxxP

Otros polinomios

Ya hemos repasado algunas técnicas útiles para factorizar polinomios: factor común, factor

común por grupos, diferencia de cuadrados, trinomio cuadrado perfecto y cuatrinomio cubo

perfecto, pero estos métodos son aplicables sólo a polinomios que tienen formas particulares.

¿Cómo hacer cuando los polinomios no son factorizables con estos métodos?, ¿cómo

descomponerlos en factores primos? En general, este no es un problema sencillo de resolver y se

utilizan métodos de aproximación. Sin embargo, en todos los casos se pueden encontrar raíces

de cualquier polinomio mediante prueba con valores de la indeterminada x que se crea pueden

ser raíces.

Recordemos el concepto de valor numérico de un polinomio. Por ejemplo,

Si P(x) = x 3 8 entonces: P(1) = 13 8 = 7; P(2) = 23 8 = 0

Page 42: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

41

Si T(x) = x 3 + 1 entonces: T(1) = 13 + 1 = 2; T(1) = (1)3 + 1 = 0

Observamos que algunos valores numéricos son iguales a cero. Entonces decimos que:

2 es raíz de P(x)

1 es raíz de T(x)

a es raíz de P(x) si y sólo si P(x) es divisible por (x a)

Esta propiedad es aplicable a cualquier polinomio.

Si S(x) = x 4 3x + 2 y S(1) = 14 3 . 1 + 2 = 0 entonces, 1 es raíz de S(x).

Utilizando esta propiedad, podemos descomponer los tres polinomios dados:

Si 2 es raíz de P(x) = x 3 8, entonces x 3 8 es divisible por x 2.

1 0 0 -8

2 2 4 8

1 2 4 0 x 3 8 = (x 2 + 2x + 4) (x 2)

Si 1 es raíz de T(x) = x 3 + 1, entonces x 3 + 1 es divisible por x + 1.

1 0 0 1

−1 -1 1 -1

1 -1 1 0 x 3 + 1 = (x 2 x + 1) (x + 1)

Si 1 es raíz de S(x) = x 4 3x + 2, entonces x 4 3x + 2 es divisible por x 1.

1 0 0 -3 2

1 1 1 1 -2

1 1 1 -2 0 x 4 -3x + 2 = (x 3 + x 2 + x - 2) (x - 1)

Para hallar las raíces racionales de un polinomio, es conveniente conocer el Teorema de

Gauss:

Page 43: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

42

Cuando una fracción irreducible q

p es raíz de un polinomio con coeficientes enteros, p es divisor

del término independiente y q es divisor del coeficiente principal.

Si queremos encontrar las raíces racionales de un polinomio con coeficientes enteros, debemos

seguir estos pasos:

I. Hallar los divisores del término independiente (p) y los divisores del coeficiente principal

(q).

II. Formar con ellos todas las fracciones irreducibles q

p , que son las posibles raíces.

III. Hallar el valor numérico del polinomio para esas fracciones para ver si alguna es raíz de

él.

Ejemplo: Factorizar al polinomio: 684)( 234 xxxxxP .

Verificamos que el polinomio tiene coeficientes enteros.

I. Divisores del término independiente, (p): {1, 1, 2, 2, 3, -3, 6, 6}

Divisores del coeficiente principal, (q): {1, 1}

II. Para hallar todas las fracciones irreducibles p/q, notamos que los posibles valores de q

son 1 y 1, por lo tanto p/q será igual a p, para cada caso. Es decir que las posibles raíces

racionales de P(x) son los valores de p, o sea, los divisores del término independiente.

III. Y ahora, con un poco de suerte e intuición para que la tarea sea más breve, se calcula el

valor numérico de P(x) para distintos valores de p, hasta encontrar alguna raíz:

P(1) = 14 4 . 13 + 12 + 8 . 1 – 6 = 0 1 es raíz de P

Entonces, P(x) es divisible por x 1

1 4 1 8 6

1 1 3 2 6

1 3 2 6 0

El polinomio P(x) queda, en principio, factorizado como: )1(623)( 23 xxxxxP

Busquemos ahora las raíces de 623)( 23 xxxxQ .

Page 44: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

43

Observamos que las posibles raíces racionales de Q son las mismas que las de P.

Evaluamos Q(1) = 13 3 . 12 2 . 1 + 6 = 2 0 por lo que 1 no es raíz de Q.

Calculamos Q(1) = (1)3 3 . (1)2 2 . (1) + 6 = 4 0

Ahora Q(2) = 23 3 . 22 2 . 2 + 6 = 2 0.

Puede ser Q(2) = (2)3 3 . (2)2 2 . (2) + 6 = 12 0. … Hasta aquí no se tuvo suerte

Seguimos: Q(3) = 33 3 . 32 2 . 3 + 6 = 0. ¡Al fin!!!

Entonces Q(x) es divisible por x 3. También P(x) es divisible por x 3 porque si 3 es raíz de

Q(x) también es raíz de P(x).

1 3 2 6

3 3 0 6

1 0 2 0

El polinomio P(x) queda expresado así: )1()3()2()(

)(

2 xxxxP

xQ

Nos queda hallar las raíces de H(x) = x2 2. Son 22 xyx , que no pertenecen al conjunto

de los racionales, pero pueden encontrarse aplicando la técnica de la diferencia de cuadrados.

Entonces P(x) queda completamente factorizado de la siguiente manera

)1()3()2()2()( xxxxxP

Donde las raíces reales de P(x) resultan ser .13,2,2 xyxxx

Existen polinomios cuyos coeficientes no son enteros y, sin embargo, también podemos buscar

sus raíces racionales aplicando el Teorema de Gauss.

Por ejemplo, 12

1

2

5)( 23 xxxxP . Multiplicando P(x) por 2 obtenemos el polinomio

252)( 23 xxxxF .

Se puede verificar que las raíces racionales de F(x) son las mismas que las de P(x), a pesar de

que los polinomios son diferentes.

Actividad 15: Factorizar los siguientes polinomios, utilizando cualquiera de las técnicas

descriptas, e indicar cuáles son sus raíces:

Page 45: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

44

a) 12164)( 234 xxxxxT b) 105105)( 23 xxxxQ

c) 1622)( 2 xxT d) 3612)( 24 xxxV

e) 567 532)( xxxxW

Page 46: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

45

EXPRESIONES ALGEBRAICAS RACIONALES

Expresiones racionales- Ecuaciones e inecuaciones

El álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son

desconocidas (incógnitas) y se representan por letras.

El lenguaje simbólico dará lugar a expresiones algebraicas mediante las cuales se traducen los

términos de un problema dado.

Si el problema del gran mago te quedó expresado de esta manera, en lenguaje simbólico, es

porque vos también podés convertirte en mago.

15483

93)15(

x

Discute con tus compañeros cual es el “truco” utilizado.

Actividad 1: Traducir a lenguaje algebraico los siguientes enunciados:

La base y la altura de un rectángulo difieren en 10 unidades.

…………………………………………………………………………………………

La tercera parte de un número menos el otro.

……………………………………………………………………………………………………

La suma de un número par y uno impar.

……………………………………………………………………………………………………

La astucia del Gran Mago

El Gran Mago me dijo: -Piensa un número. -Añádele 15. -Multiplica por 3 el resultado. -A lo que salga restale 9. -Divide en 3. -Resta 8. -Dime lo que sale. Yo le dije: -154, Gran Mago. Y el Gran Mago me dijo instantáneamente: -El número que pensaste fue el 158. ¿Cómo consigue el Gran mago averiguarlo tan deprisa?

Page 47: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

46

La distancia d que recorre un móvil se calcula como el producto entre el tiempo t que

tarda y la velocidad v.

………………………………………………………………………………………………….

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Con

ellas se puede operar para obtener otras relaciones.

Un tipo especial de expresiones algebraicas son las fracciones algebraicas.

Vamos a acercarnos a ellas resolviendo el siguiente problema:

Actividad 2: “Un peatón recorre 14 km en 4 hs. Los primeros 8 km los recorre a una velocidad

de 1 𝑘𝑚 𝑕 más que la que lleva en los siguientes 6 km”.

Si llamamos v a la velocidad con que recorre el primer tramo, será 𝑣 − 1 la velocidad con que

recorre el segundo tramo.

RECORRIDO VELOCIDAD TIEMPO

PRIMER TRAMO 8 km 𝑣 8

𝑣

SEGUNDO TRAMO 6 km 𝑣 − 1 6

𝑣 − 1

El tiempo total invertido es 1

68

vv.

A estas expresiones: v

8 y

1

6

v las llamamos fracciones algebraicas o expresiones

algebraicas racionales.

Generalizando, son todas aquellas de la forma )(

)(

xB

xA

donde A(x) y B(x) son polinomios

en x, y B(x) distinto del polinomio nulo.

Por ejemplo, 2

7

xes una expresión algebraica racional porque el numerador A(x) = 7 es un

polinomio y el denominador B(x) = x 2 también es un polinomio.

También es una expresión algebraica racional xx

xx

7

322

3

.

¿Es 3

3 35

x

xx una expresión algebraica racional?..............................................................................

La expresión x2 9 es también racional porque x2 9 es un polinomio y 1, su denominador,

también lo es.

Page 48: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

47

Simplificación de expresiones racionales

Recordemos que, dado el racional 3

2 podemos hallar otros equivalentes con él: ...21

14

6

4

3

2

donde 0

ncon

nb

na

b

a .

Análogamente para la expresión racional )(

)(

xB

xA

pueden hallarse expresiones racionales

equivalentes: )()(

)()(

)(

)(

xNxB

xNxA

xB

xA

siendo B(x) y N(x) cualquier polinomio no nulo.

En ℚ muchas veces se nos presenta el problema de encontrar la fracción equivalente más

simple que una dada. Por ejemplo, 12

7

1132

117

132

772

También es posible simplificar expresiones algebraicas racionales cuando existen factores

comunes en el numerador y el denominador, de lo contrario la expresión racional es irreducible.

Consideremos 33

123

2

xxx

x . Factorizamos su numerador y su denominador:

)1()1(12 xxx

)1()1()3()1()3()3()3(33 2223 xxxxxxxxxxx

Entonces 3

1

)1()1()3(

)1()1(

33

123

2

xxxx

xx

xxx

x

Las dos expresiones racionales, 33

123

2

xxx

x y 3

1

x son equivalentes.

Veamos otros ejemplos:

1) 2

)2(3

)2()2(

)2()2(3

)2(

)4(3

44

1232

2

2

3

x

xx

xx

xxx

x

xx

xx

xx

2) 5

1

)5()5(

5

25

5222

2

4

2

xxx

x

x

x

¿Por qué esta igualdad es válida para cualquier número real?

...................................................................................................................................................

Actividad 3: Simplificar las siguientes expresiones algebraicas racionales:

a) 96

622

xx

x b) 1

2

x

xx c) xxx

xx

4914

4923

3

d) 23

62

2

xx

xx

Page 49: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

48

Operaciones con expresiones algebraicas racionales

Para operar con expresiones racionales, aplicamos las mismas propiedades y técnicas que para

operar con fracciones numéricas.

Adición y Sustracción

Recordamos que para sumar 21

1

14

3 necesitamos hallar fracciones equivalentes a los sumandos,

de igual denominador:

42

11

732

2133

73

1

72

3

21

1

14

3

Para sumar (o restar) expresiones racionales de distinto denominador, debemos sumar (o

restar) expresiones equivalentes a ellas que tengan el mismo denominador. Para hallarlo,

factorizamos los denominadores y luego multiplicamos los factores comunes y no comunes con

el mayor exponente con el que figura (mínimo común múltiplo).

Veamos el siguiente ejemplo:

43363

222 xx

x

xx

Factorizamos los denominadores:

)4()1()1(3

2

)4()1()12(3

222 xx

x

xxx

x

xx

Buscamos expresiones equivalentes con igual denominador:

)4()1(3

)1(3

)4()1(3

)4(222 xx

xx

xx

x

Operamos en el numerador y sumamos: )4()1(3

83

)4()1(3

33822

2

2

2

xx

xx

xx

xxx

Como el numerador no tiene raíces reales no puede escribirse factorizado.

Vamos a calcular

4

42

103

1022 x

x

xx

x

Factorizamos los denominadores:

)2()2(

42

)5()2(

10

xx

x

xx

x

Elegimos un denominador común y hallamos las expresiones equivalentes:

)2()5()2(

)5()42(

)2()5()2(

)2()10(

xxx

xx

xxx

xx

Aplicamos propiedades y restamos:

)2()5()2(

204102

)2()5()2(

20102 22

xxx

xxx

xxx

xxx

)5()2(

)20(

)2()5()2(

)2()20(

)2()5()2(

4022

)2()5()2(

20142208 222

xx

x

xxx

xx

xxx

xx

xxx

xxxx

Page 50: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

49

La suma de expresiones algebraicas racionales es asociativa, conmutativa, cumple la ley de

cierre y posee elemento neutro, P(x)= 0. Recordemos además, que restar es sumar el opuesto.

Actividad 4: Calcular:

a)

xxx

x

x 3

1

96

1

9

222

b)

22

21

2062

2

25

522 xxx

x

x

x

c)

222 )1(

1

1

2

)1(

1

xxx

Multiplicación

Para multiplicar dos expresiones racionales )(

)(

)(

)(

xD

xCy

xB

xA , procedemos así:

nulosnoxDxBD(x)B(x)

C(x)A(x)

D(x)

C(x)

B(x)

A(x) )(y )( ,

Por ejemplo:

I) 32

36

)1()3(

3)12(

1

3

3

122

2

xx

xx

xx

xx

x

x

x

x

II) Calculamos ahora

)x4x()9x(

)15x5()x4x(

x4x

15x5

9x

x4x232

2

232

2

Factorizamos cada uno de los polinomios:

)4()3()3(

)3(5)4(2 xxxx

xxx

Simplificamos y obtenemos el resultado: )3(

5

xx.

La multiplicación de expresiones algebraicas racionales cumple con la ley de cierre, es

asociativa, conmutativa, tiene elemento neutro (1) y es distributiva respecto de la suma y la

resta.

¿Existe inverso multiplicativo para toda expresión )(

)(

xB

xA?

...........................................................................................................................

Actividad 5: Resolver

a) 8126

126

2

4423

2

xxx

x

x

xx b) 12

1

1

1)1(

22

3

xxxx

xx

División

Se llama inverso multiplicativo de una expresión algebraica racional )(

)(

xB

xA a la expresión

)(

)(

xA

xB,

con 𝐵 𝑥 𝑦 𝐴(𝑥) no nulos.

Para dividir dos expresiones algebraicas racionales )(

)(

xB

xA y

)(

)(

xD

xC operamos igual que en el

conjunto ℚ : )()(

)()(

)(

)(

)(

)(

)(

)(:

)(

)(

xCxB

xDxA

xC

xD

xB

xA

xD

xC

xB

xA

con 𝐵 𝑥 , 𝐶 𝑥 𝑦 𝐷 𝑥 𝑛𝑜 𝑛𝑢𝑙𝑜𝑠.

Page 51: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

50

Por ejemplo: 2

2

26

2

2)3(

)2()1(

2

2:

3

1

xx

xx

xx

xx

x

x

x

x

Actividad 6:

1) Con las expresiones 6

3)(

9

42)(

22

xx

xxTy

x

xxP calcular:

a) ( )P x T x b) P(x) : T(x) c) T(x) : P(x)

2) Resolver:

a) 3

16:

9

4 4

2

2

x

x

x

x b) 1

63:

1

1052

x

x

x

x c) 1

43:

1

1

1

44

2

22

x

xx

x

x

x

x

Actividad 7: Efectuar los siguientes ejercicios combinados:

a) 104

9

6

2

4

2 2

22

x

x

xx

x

x

x b) 4

4:

2

1

2

12

xxx

c) 4

4:

2

1

2

12

xxx

d)

1

1:)( 3

xxx

Page 52: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

51

TRABAJO PRÁCTICO - EXPRESIONES ALGEBRAICAS

1) Hallar el valor de a para que el resultado sea un polinomio de grado 4:

)72()2()483( 45235354 xaxxaxxxaxx

2) Efectuar las siguientes operaciones:

a)

)23(

3

1

2

1

5

3 226 xxxx

b)

)1(

3

4

2

1)( 24322 xxxxxxx

c) )1()1()1()1( 222 xxxx

3) Calcular:

a) 23 )32( xx b)

2

23

4

3zz

c) )12(:)6783( 23 xxxx d) )1(:)24( 3463 xxxxxx

4) Hallar el dividendo P(x) de una división entera sabiendo que el resto es R(x) = 3x 2 + x, el

cociente C(x) = x 3 y el divisor es D(x) = x 4∙ R(x).

5) Hallar el valor de a para que se cumpla la siguiente igualdad:

)(33)2()(2 245357 xRxxxaxxxx

Donde R(x) es el resto de dividir x7 - 2x5 por x3 + x.

6) Para cada par de polinomios, indique si P(x) es divisible por Q(x):

a) xxxQxxxxP 3)(952)( 234

b) 32)(952)( 234 xxxQxxxxP

c) 1)( 312)( 2235 xxQxxxxxP

d) 1)( 312)( 235 xxQxxxxxP

e) 3)( 226)( 352 xxQxxxxxP

7) Al dividir P(x) axxx 242 23 por Q(x) = x 3, se obtuvo 10 como resto. Hallar el

término independiente de P(x).

8) El polinomio 22143)( xxxH es divisible por Ñ(x) = x a. Hallar los valores de a para

que eso sea posible.

9) Encontrar el valor de h sabiendo que 4 es raíz de hxxxxM 1175)( 56

10) Encontrar el valor de h sabiendo que 1 es raíz de xhxxxxJ 3110)( 347

Page 53: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

52

11) Factorizar:

a) 22 )1()2( xx b) 123 xxx c)

34 991 xxx

d) 23 454 xxx

12) Realizar las siguientes operaciones, simplificando los resultados cuando sea posible:

a)

1

1

1 4

4

2

2

x

x

x

x

b) 2

2

23 )1(

121

3

1

xx

xx

xx

x

c)

1

2:

6

43

2

x

x

xx

xx

d) 5

7:

77

3

9

62

2

x

x

x

x

x

x

x

e)

9

1

)3(

2

3

1

22

xxx

f) 3

22

22

2

9

12:

3

)12(

14

12

3

12

x

xx

x

x

x

x

x

x

g)

1:

1 x

xx

x

xx

Page 54: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

53

EECCUUAACCIIOONNEESS EE IINNEECCUUAACCIIOONNEESS

ECUACIONES

Un problema de ingenio frecuente es:

Pensar un número.

Sumarle 10.

Multiplicar por 2 el resultado.

A lo que se obtiene, restarle 4.

Dividirlo por 2.

Restarle 5.

Si la respuesta, es, por ejemplo, 13, el número pensado originalmente es 10.

¿Cómo se sabe?

Para contestar esta pregunta, expresemos en lenguaje simbólico todas las operaciones

realizadas. Llamémosle x al número pensado originalmente (valor desconocido a averiguar).

Entonces: 1352

42)10(

x

Aplicando las propiedades conocidas de las operaciones entre número reales, obtenemos:

( 10) 2 4 ( 10) 2 45 13 5 13 10 2 5 13 3 13

2 2 2

x xx x

Por lo tanto, realizar todos los cálculos pedidos equivale a simplemente sumarle 3 al número

original. De esta manera, restándole 3 a 13 es fácil descubrir cuál había sido el número pensado

en principio.

Observemos que para resolver el problema utilizamos una igualdad en la que un valor era

desconocido. Muchos problemas se resuelven de manera similar, lo que originó el estudio de

las…

Ecuaciones:

Son relaciones de igualdad entre cantidades, algunas de ellas desconocidas.

Por ejemplo: y + 2x = 5, x2 + a = b + 8, 2x + 9 = 17.

En particular, cuando el valor desconocido es uno solo, a dicha ecuación la llamamos ecuación

con una incógnita. Algunos ejemplos de ecuaciones con una incógnita son:

3x + 4 = 5x – 8

2x2 + 20 = 24x –20

log x = 3 – log (x + 2)

Page 55: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

54

Actividad 1:

Si x toma los valores 6, –1 o 10, ¿cuáles de las ecuaciones anteriores se cumplen? ¿Cuáles

no se cumplen?

.....................................................................................................................................

¿Podría determinar todos los valores de x que satisfacen la ecuación b)? ¿Por qué?

.....................................................................................................................................

Aquellos valores de x que satisfacen una determinada ecuación se los denomina soluciones de

la ecuación. Por ejemplo: 5 es solución de la ecuación –2x + 4 = –x – 1 puesto que -2 . 5 + 4 = -6

= -5 - 1; sin embargo, 2 no es solución de esa ecuación puesto que –2 . 2 + 4 = 0, mientras que

–2 – 1 = –3 y 0 –3.

El conjunto solución de una determinada ecuación puede:

Tener un solo elemento: por ej. 2x = 6, la única solución de esta ecuación es x = 3. Verificarlo.

Tener un número finito de elementos: por ej. x3 + 21 x2 –

21 x = 0 tiene como soluciones

solamente a 21 , –1 y 0. Verificarlo.

No tener elementos: por ej. x2 = –4, ya que vimos anteriormente que todo número real

elevado al cuadrado da como resultado un número no negativo. En este caso decimos que el

conjunto solución es vacío.

Tener infinitos elementos: 2x – x = x, puesto que todo número real es solución de dicha

ecuación. ¿Por qué?

Actividad 2:

¿Se puede encontrar una ecuación que tenga al número 2 como solución?

.....................................................................................................................................

¿Se puede encontrar una ecuación que tenga al número 2 como solución, pero que el conjunto

solución posea más de un elemento?

....................................................................................................................................

¿Se puede encontrar una ecuación que no tenga ninguna solución en R?

.......................................................................................................................................

¿Se puede decir cuál es el conjunto solución de la ecuación x + 2y = 5?

.......................................................................................................................................

Cuando dos ecuaciones tienen el mismo conjunto solución, diremos que dichas ecuaciones son

equivalentes. Por ejemplo, las ecuaciones 4x + 6 = x + 9 y x – 2 = –1 tienen ambas como

conjunto solución al {1}.

En el ejemplo introductorio, lo que hicimos fue encontrar sucesivas ecuaciones equivalentes a la

dada en un principio, es decir, ecuaciones que tengan el mismo conjunto solución, de manera tal

Page 56: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

55

que resulten más fáciles de resolver que la primera. Así, la ecuación equivalente que obtuvimos

fue x + 3 = 13, mucho más simple de resolver que la ecuación original 1352

42)10(

x.

¿Cómo podríamos obtener ecuaciones equivalentes a una dada? Para esto, nos valemos de

algunas propiedades básicas de las igualdades:

Si a, b, c y d son cuatro números reales cualesquiera, entonces valen las propiedades

siguientes:

1) Reflexividad: a = a, es decir, todo número es igual a sí mismo.

2) Simetría: a = b b = a, es decir, dados dos números a y b, si el primero es igual al

segundo, entonces el segundo también es igual al primero.

3) Transitividad: a = b b = c a = c, es decir, si un número a es igual a otro b, y éste

último es igual a un tercer número c, entonces el primero es igual al tercero.

4) Uniformidad con la suma: a = b a + c = b + c, es decir, si se suma el mismo número a

ambos miembros de una igualdad, se obtiene otra igualdad.

5) Uniformidad con el producto: a = b ac = bc, es decir, si se multiplican ambos

miembros de una igualdad por el mismo número, se obtiene otra igualdad.

Veamos cómo aplicar dichas propiedades en la resolución de algunas ecuaciones sencillas. Por

ejemplo:

3

1

3

11

3

13

13

)8(9)8(83

983

x

x

x

x

x

Es importante verificar que el valor obtenido satisface la ecuación porque un error en los

cálculos puede conducirnos a una solución incorrecta.

Observación: ¿Qué sucedería si quisiéramos aplicar la propiedad uniforme de la

multiplicación con un valor x desconocido? Consideremos la ecuación 2x = 6

Multipliquemos ambos miembros por x, resulta 2x2 = 6x

¿Cuál es el conjunto solución de la primera ecuación?

.....................................................................................................................................

¿Y de la segunda ecuación?

.....................................................................................................................................

¿Son ecuaciones equivalentes?

.....................................................................................................................................

(por la uniformidad con la suma)

(por la uniformidad con el

producto)

Page 57: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

56

Conclusión:

Si a ambos miembros de una ecuación se los multiplica o divide por un mismo número distinto

de cero, se obtiene una ecuación equivalente a la primera.

Actividad 3: Determinar si los siguientes pares de ecuaciones son equivalentes. Justificar.

a) 3x – 5 = –2x y 3x – 5 + x2 = –2x + x2

b) 3x + 4 = 6 y x + 4 = 36

c) x2 = 3x2 – 5x y x = 3x – 5

d) 4 . (–2x + 8) = 6x y –2x + 8 = 23 x

e) –2 . (x + 9) = 8 y x + 9 = 8 + 2

Clasificación de ecuaciones polinómicas

Determinar el grado de cada polinomio del primer miembro y completar:

𝑃 𝑥 = 2𝑥 − 1 grado(P(x)) = ..............

Ecuación lineal o de primer grado: 2𝑥 − 1 = 0

𝑄 𝑥 = 𝑥2 − 2𝑥 − 3 grado(Q(x)) = ..............

Ecuación cuadrática o de segundo grado: 𝑥2 − 2𝑥 − 3 = 0

𝑅 𝑥 = 𝑥3 + 2𝑥2 − 𝑥 − 2 ⇒ grado(R(x)) = ..............

Ecuación cúbica o de tercer grado: 𝑥3 + 2𝑥2 − 𝑥 − 2 = 0

𝑆 𝑥 = 𝑎𝑛 𝑥𝑛 + …… . . + 𝑎1 x+ 𝑎0 ⇒ grado(S(x)) = ...........

Ecuación de grado n: 𝑎𝑛 𝑥𝑛 + …… . . + 𝑎1 x+ 𝑎0 = 0

Resolución de ecuaciones de primer grado

Con las propiedades vistas anteriormente estamos en condiciones de resolver cualquier tipo de

ecuación de primer grado. Veamos ciertos casos particulares.

Si la ecuación es 2x – 8 = 2(3 + x)

Procedimiento:

68

226282

2682

)3(282

xxxx

xx

xx

(por propiedad distributiva)

(por propiedad uniforme de la suma)

(operando)

¡ABSURDO!

Page 58: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

57

¿Qué significa esto? ¿Habremos cometido algún error durante el desarrollo?

No se cometió ningún error. El absurdo provino de que la ecuación dada no tiene solución en los

números reales, es decir, no existe ningún valor de x que satisfaga la ecuación. El conjunto

solución de dicha ecuación es vacío.

Si la ecuación es : –10x = 5(2x – 4x)

Procedimiento:

xx

xx

xx

xx

xxx

10

110

10

110

1010

)2(510

)42(510

Observemos que la ecuación equivalente que obtuvimos se verifica para cualquier valor de x.

Esto quiere decir que cualquier número real verifica la ecuación inicial, es decir, el conjunto

solución de dicha ecuación es infinito. Verificar esto con algunos ejemplos.

Si la ecuación es : 3𝑥 − 5 = 8

Procedimiento:

3

13

3

113

3

13

133

58553

853

x

x

x

x

x

En este caso, existe un único valor de 𝑥: (3

13x ) que verifica la ecuación original. El conjunto

solución es unitario.

Conclusión:

Dada una ecuación de primer grado, ésta puede tener:

ninguna solución.

una única solución.

infinitas soluciones.

(operando)

(por propiedad uniforme del producto)

(por propiedad uniforme de la suma)

(por propiedad uniforme del producto)

Page 59: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

58

Resolución de ecuaciones de segundo grado

Como hemos visto, una ecuación de segundo grado es de la forma:

02 cbxax , donde 𝑎 ≠ 0, 𝑎, 𝑏, 𝑐 ∈ ℝ o cualquier expresión equivalente a ésta.

¿Por qué se aclara que 𝑎 ≠ 0? .......................................................................................................

Ejemplos:

–x2 + 5x – 8 = 6, es una ec. de seg. grado pues es equivalente a: –x2 + 5x – 14 = 0

x ∙ (7 – x) = x, es una ec. de seg. grado pues es equivalente a: –x2 + 6x + 0 = 0

5 = 3x2 – 2, es una ec. de seg. grado pues es equivalente a: 3x2 + 0x – 7 = 0

(x + 2)2 = 0, es una ec. de seg. grado pues es equivalente a: x2 + 4x + 4 = 0

Veamos un caso particular de resolución de una ecuación de segundo grado.

Si la ecuación es: 2x2 + 6x – 8 = 0

En primer lugar, extraemos 2 como factor común: 2∙(x2 + 3x – 4) = 0

Ahora, tenemos que sumar y restar un número para que en la expresión entre paréntesis se

forme un trinomio cuadrado perfecto. Este número es 49 . ¿Cómo lo obtuvimos? ¿Por qué lo

sumamos y restamos?

La expresión resulta: 2.(x2 + 3x + 49 –

49 – 4) = 0

Factorizando el trinomio y operando:

2.[(x + 23 )2 –

425 ] = 0

Dividiendo ambos miembros por 2 y despejando el binomio al cuadrado, resulta: 2

3 25

2 4x

Como ambos miembros son positivos, podemos calcular sus raíces cuadradas, y se obtiene:

3 5 

2 2x

De donde: x = 25 –

23 = 1, o bien x = –

25 –

23 = –4

Por lo tanto, la soluciones de la ecuación son {1, –4}. Verificarlo.

A este procedimiento se lo conoce como “completamiento de cuadrados”.

Page 60: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

59

Apliquemos, ahora, el completamiento de cuadrados para resolver una ecuación general de

segundo grado:

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 , donde 𝑎 ≠ 0

02

a

cx

a

bxa (podemos hacerlo pues 𝑎 ≠ 0)

En este caso, debemos sumar y restar 2

2

4a

b para obtener un trinomio cuadrado perfecto.

044 2

2

2

22

a

c

a

b

a

bx

a

bxa 0

42 2

22

a

c

a

b

a

bxa

Dividiendo por 𝑎 ≠ 0 , calculando el denominador común 4𝑎2 y despejando el binomio al

cuadrado, resulta:

2

22

4

4

2 a

acb

a

bx

2

2

4

4

2 a

acb

a

bx

a

acb

a

bx

2

4

2

2

a

acb

a

bx

2

4

2

2

a

acbbx

2

42

Observemos que, mediante este desarrollo genérico, hemos conseguido obtener una fórmula que

nos permite conocer las soluciones de cualquier ecuación de segundo grado, sin tener que

aplicar el procedimiento de completamiento de cuadrados cada vez que queremos resolver una

ecuación cuadrática. Esta fórmula es la resolvente de la ecuación de segundo grado.

Ejemplo: Si queremos hallar las soluciones de la ecuación –2x2 – 3x = –2, en primer lugar

debemos llevarla a la forma general ax2 + bx + c = 0, donde a 0, es decir, –2x2 – 3x + 2 = 0.

En este caso particular, tenemos que a = –2, b = –3 y c = 2. Luego, utilizando la fórmula ya

vista las soluciones están dadas por: )2(2

2)2(4)3()3( 2

2,1

x .

Operando se tiene: 4

532,1

x , es decir 2

4

531

x y

2

1

4

532

x .

Veamos qué información nos puede brindar sobre las soluciones la fórmula para resolver

ecuaciones de segundo grado:

Page 61: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

60

1) Supongamos que tenemos una ecuación de segundo grado en la que acb 42 = 0.

¿Cómo influye esto en el conjunto solución?

.....................................................................................................................................

2) Supongamos que ac4b2 < 0. ¿Qué sucede en este caso? ¿Cómo son las soluciones?

.....................................................................................................................................

3) ¿Qué sucede, en cambio, cuando acb 42 > 0? ¿Cómo son las soluciones?

.....................................................................................................................................

Observación: Notemos que al obtener las soluciones de una ecuación polinómica de la

forma 02 cbxax lo que se hace es hallar las raíces del polinomio cbxaxxP 2)( .

Conocidas las raíces 1r y 2r , esto nos permite escribir al polinomio en la forma

))(()( 21 rxrxaxP , es decir, escribirlo totalmente factorizado.

Recíprocamente, si tenemos un polinomio escrito de la forma ))(()( 21 rxrxaxP , es

decir, factorizado, sabemos que 1r y 2r son las soluciones de la ecuación 0))(( 21 rxrxa .

Conclusión:

Dada una ecuación de segundo grado, ésta puede tener:

ninguna solución real.

una única solución real doble.

dos soluciones reales distintas.

Ejemplo: Sea el polinomio P(x) = 4x2 + 8x – 12. Para hallar las raíces, planteamos la ecuación

4x2 + 8x – 12 = 0 y encontramos sus soluciones mediante la fórmula resolvente de la ecuación de

segundo grado: 1r = 1, 2r = –3.

Luego, el polinomio factorizado resulta: P(x) = )3x)(1x(4 .

Actividad 4: Resolver las siguientes ecuaciones:

1) x2 – 5x = 2x2 + 6x + 2 – x2

2) 2x2 = –18

3) x.(x – 1)(x + 2) = x3

4) –32 x2 + 2 x –

21 = 0

5) (x + 3)2 = 12x

6) x2 + 3x = 3.(x2 + x) – 2x2

Resolver los siguientes problemas:

1) Julieta empleó la mitad de su dinero en comprar ropa y la mitad del resto en paseos.

Si aún le quedan $10, ¿cuánto dinero tenía?

Page 62: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

61

2) La edad de Pablo elevada al cuadrado es igual a cinco veces la edad que tendrá

dentro de 10 años. ¿Qué edad tiene Pablo?

Ecuaciones fraccionarias que se resuelven mediante ecuaciones de primer y segundo

grado

Llamamos ecuaciones fraccionarias a aquellas de la forma 0)x(Q

)x(P , donde 𝑃 𝑥 y 𝑄(𝑥) son

polinomios, 𝑄(𝑥) ≠ 0, o a aquellas ecuaciones que se pueden llevar a esta forma.

Por ejemplo, son ecuaciones fraccionarias:

32

1

x

x pues es equivalente a 02

720

2

63103

2

1

x

x

x

xx

x

x .

02

51

xx pues es equivalente a 0

2

70

2

52

xx.

02

432

3

x

xx

Intentemos resolver la siguiente ecuación fraccionaria: 01

12

x

x . Para esto, aplicamos las

propiedades ya conocidas.

Multipliquemos ambos miembros por x +1:

)1x(0)1x(1x

1x 2

01x2 1x1 y 1x2 .

Verificar si 1x y

2x son solución de la ecuación original. ¿Qué sucede? ¿Qué error hemos

cometido?

...........................................................................................................................................

Conclusión:

Cuando resolvemos una ecuación del tipo 0)(

)(

xQxP , debemos descartar como posibles

soluciones a los valores de x que anulan el denominador Q(x), es decir, los valores que

satisfacen la ecuación Q(x) = 0. Esto se debe a que no está definida la división por 0.

Actividad 5: Resolver y verificar las soluciones encontradas:

a) 22

1

x

x b) 1

32

3

x

x c) 0

2

4

2

3

xx d)

x

x

x

x

6

6

3

3

Page 63: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

62

ECUACIONES LINEALES CON DOS INCÓGNITAS

Analicemos ahora las ecuaciones lineales con dos incógnitas. Por ejemplo: 2𝑥 − 𝑦 = 3. Para

encontrar una solución de dicha ecuación, debemos hallar un par de números que la satisfaga.

A diferencia de lo que ocurre con las ecuaciones lineales con una incógnita, en las ecuaciones

lineales con dos incógnitas siempre se encuentran infinitas soluciones. Notemos que si

despejamos la incógnita 𝑦 en la ecuación dada, obtenemos 𝑦 = 2𝑥 − 3. Entonces para cada valor

de 𝑥 encontramos un valor de 𝑦. Este par de números (𝑥,𝑦) es una de las infinitas soluciones de

la ecuación dada.

Por ejemplo, los siguientes pares de números son solución de la ecuación 2𝑥 − 𝑦 = 3:

0, −3 ; 1,−1 ; 5

2, 2 .

En efecto, si reemplazamos estos valores en la ecuación inicial 2𝑥 − 𝑦 = 3, veremos que se

satisface la igualdad:

2.0 − −3 = 3 ; 2.1 − −1 = 3 ; 2 5

2 − 2 = 3

A continuación expresamos el conjunto formado por todas las soluciones de la ecuación dada,

llamado el conjunto solución o solución general:

𝑆𝑔 = 𝑥 , 2𝑥 − 3 , 𝑥 ∈ ℝ

Otra forma de hallar los pares que son solución de la ecuación dada es despejando la variable

𝑥, obteniendo el conjunto solución

𝑆𝑔 = 𝑦

2+

3

2 ,𝑦 ,𝑦 ∈ ℝ

Observemos que ambos conjuntos solución son equivalentes, aunque estén expresados de

distinta manera.

INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA

Algunos problemas nos conducen a plantear desigualdades. Resolvamos la siguiente situación.

El tanque de nafta de un auto puede contener hasta 45 litros. Tiene conectado un sistema

automático de alarma que se enciende cuando sólo quedan 8 litros en él. ¿Cuántos litros de

nafta es posible cargar cuando recién se enciende la señal?

Si con x designamos la cantidad de litros que podemos cargar, el problema queda planteado con

la siguiente desigualdad:

8 + x 45

Donde 8 representa la reserva, x los litros a cargar y 45 la capacidad máxima del tanque.

La desigualdad planteada es una inecuación.

Definición: Una inecuación es una desigualdad que contiene incógnitas (valores desconocidos).

Page 64: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

63

De la misma forma que para resolver ecuaciones necesitamos conocer las propiedades de las

igualdades, ahora necesitaremos conocer las propiedades de las desigualdades para poder

resolver inecuaciones.

Propiedades de las desigualdades

Consideremos la desigualdad –2 < 7 y sumemos a ambos miembros el número 8. ¿Cómo

es dicha desigualdad respecto de la original?

..............................................................................................................................

Consideremos la misma desigualdad, –2 < 7, pero sumemos a ambos miembros el

número negativo –8. ¿Cómo es dicha desigualdad respecto de la original?

...................................................................................................................................

Conclusión:

Si sumamos a ambos miembros de una desigualdad un número real cualquiera, la

desigualdad se mantiene en el mismo sentido. En símbolos: Sean a, b, c R,

si a < b, entonces a + c < b + c.

Ahora, consideremos la desigualdad 5 < 10 y multipliquemos ambos miembros por 4. ¿Cómo

es dicha desigualdad respecto de la considerada?

.............................................................................................................................

Partamos de la misma desigualdad, 5 < 10, y multipliquemos ambos miembros por el

número negativo –4. ¿Cómo es dicha desigualdad respecto de la considerada?

..............................................................................................................................

Conclusión:

a. Si multiplicamos ambos miembros de una desigualdad por un número

positivo, la desigualdad resultante mantiene el sentido de la primera. En

símbolos: Sean a, b, c R, si a < b y c > 0, entonces a.c < b.c

b. Si multiplicamos ambos miembros de una desigualdad por un número

negativo, la desigualdad resultante cambia su sentido respecto de la primera.

En símbolos: Sean a, b, c R, a < b y c < 0, entonces a.c > b.c

Ahora estamos en condiciones de resolver el problema planteado en un principio. Debíamos

resolver la inecuación: 8 + x 45.

Page 65: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

64

Resolución:

37

)8(45)8(8

miembros) ambos a 8 (sumando 458

x

x

x

Luego, podemos cargar cualquier cantidad de litros, siempre que sea menor o igual que 37.

Veamos otro ejemplo: resolver la inecuación 43

42

x.

Resolución:

4

2

18

2

12

)2

1 ( 82

)4(12)4(42

1242

3433

42

3 43

42

x

x

mbiagualdad ca y la desibros por -ambos miemmosmultiplicax

x

x

x

mantiene)gualdad se y la desipor miembros amos ambos(multiplicx

Dar dos valores de x que verifiquen la inecuación original y dos valores que no la

verifiquen.

..............................................................................................................................

¿Cuántos son los valores de x que verifican la inecuación del ejemplo? Graficarlos en la

recta numérica.

..............................................................................................................................

Observación: El conjunto solución puede ser expresado utilizando la notación de

intervalos. En el ejemplo, el conjunto solución es el intervalo [–4, +).

Actividad 6:

Consideremos la siguiente inecuación: 30)5x(38x3 . ¿Cuál es su conjunto

solución?

..............................................................................................................................

Dada la inecuación: xx

32

52. ¿Cuál es su conjunto solución?

..............................................................................................................................

Page 66: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

65

Hay situaciones en las que los valores requeridos deben satisfacer dos condiciones a la vez o

simplemente alguna de ellas. Veamos cómo proceder en cada uno de estos casos.

Encontrar los valores reales de x que satisfacen:

1) 222

1x y 102 x (ambas condiciones deben satisfacerse a la vez)

La solución de la primera inecuación está dada por {x ℝ: x < 8} = (–, 8).

Por otra parte, para la segunda ecuación, el conjunto solución es: {x ℝ : x –5} = [–5, +).

La solución del ejercicio está dada por los x que satisfacen ambas inecuaciones a la vez, es decir,

los valores de x que pertenecen a ambos conjuntos solución.

En símbolos: {x ℝ : x < 8 y x –5} = (–, 8) ∩ [–5, +) = [–5, 8).

Gráficamente:

2) xx

23

2 o 21x

(los valores de x deben satisfacer al menos una de las inecuaciones)

La solución de la primera inecuación está dada por {x ℝ : x –2} = (–, –2].

Por otra parte, para la segunda ecuación, el conjunto solución es: {x ℝ : x 3} = [3, +).

La solución del ejercicio está dada por los x que satisfacen al menos una de las inecuaciones, es

decir, los valores de x que pertenecen a un conjunto solución o al otro.

En símbolos: {x ℝ : x –2 o x 3} = (–, –2] U [3, +).

Gráficamente:

Actividad 7: Resolver las siguientes inecuaciones y expresar su conjunto solución mediante

intervalos, graficándolos en la recta numérica.

a) 514

3x b) 22323 aa

c) Las edades de Hernán, Darío y Guido suman más de 52 años. Hernán es un año menor

que Guido y tres años mayor que Darío. ¿Qué edad tiene como mínimo Hernán?

d) 285 z y 5z e) 13

2

2

3

xx

f)

3

21

2

1 xx

o 5

3

1)2(

2

1 xx

[ )

-5 8

] [ 3 -2

Page 67: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

66

Trabajo Práctico – Ecuaciones e Inecuaciones

1) a) La solución de la ecuación 4x – 8 = 2x – (–x) – (–1) es:

un número fraccionario y entero.

un número entero y negativo.

9

7

9

...ninguna de éstas.

b) La solución de la ecuación: 5x + 10x –6 – 9 + 4x = x + 3 – 12 es:

15

3

2

2

3

3

2

ninguna de éstas.

c) El valor de m que pertenece a ℕ y que es solución de la ecuación

m + 3(4m – 6) = –10 + 2(3m –5) es:

0

inexistente

7

2

2

ninguna de éstas.

2) Resolver las siguientes ecuaciones de primer grado y determinar la cantidad de elementos

del conjunto solución:

a) )15(2

14 xx b) (y – 1)(2 + y) = 5 – y(4 – y) – 2y

c) 6

185)9(3

xx

d)

3

25

6

1

3

42

2

5

aa

aa

e) a – x = 3(x – a), siendo x la incógnita y a un número real fijo.

f) 5t + 4 – t = 4(1 + t) g) y – 2 = 6(x + 4), siendo ambas, x e y, incógnitas.

3) Hallar las soluciones de las siguientes ecuaciones e identificar cuáles de ellas son

equivalentes:

Page 68: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

67

a) 𝑦 −1

4

2

=9

16 d) 3x2 + 3(3x – 1) = 2(3x + 2x2) – 13

b) 5

6𝑥 + 3

2

= 5𝑥 + 8 e) 𝑤2 −1

2𝑤 −

1

2= 0)

c) −3 𝑥 − 1 𝑥 +1

2 = 0 f) −

1

2𝑥2 = −

3

2𝑥 − 5

4) Factorizar los siguientes polinomios:

a) P(x) = x2 – 25 c) R(x) = 3x2 – 12x – 63

b) Q(x) = –2x2 + x – 10 d) S(x) = 3x2 – 12x + 12

5) Responder:

a) ¿Es posible encontrar valores de x que satisfagan (x + 3)(x – 3) = 5(x + 2) + 31 y

04

153

x al mismo tiempo?

b) ¿Es posible encontrar valores de t que satisfagan 8t2 = –4t y tt

3

4

3

22 2

a la vez?

6) Decir si las siguientes afirmaciones son verdaderas o falsas. Justificar.

a) El conjunto solución de la ecuación 152 2

x

xx está dado por {0, –7}.

b) El par (x, y) = (5, 2) es solución de la ecuación 3x2 – 2y = 51 + 10y.

c) Las ecuaciones 03

)3( 2

a

a y 03a son equivalentes.

d) 1 es raíz doble del polinomio P(x) = x2 + x – 2.

7) Resolver los siguientes problemas:

a) De un depósito lleno de líquido se saca la mitad del contenido; después, la tercera parte del

resto y quedan aún 1.600 litros. Calcula la capacidad del depósito.

b) Hallar dos números naturales impares consecutivos tales que su producto sea 255.

c) Un poste de luz de 7 m. se rompe y al doblarse, la punta de la sección rota toca el suelo a 3

m. de la base del poste. ¿A qué altura se rompió? (Ayuda: utilizar el Teorema de Pitágoras).

d) Pienso un número, le sumo 5, a este resultado lo multiplico por 3 y el nuevo resultado lo

divido por 10. Obtengo así 6. ¿Qué número pensé?

e) El perímetro del siguiente triángulo es 24 cm. ¿Cuál es la longitud de cada uno de sus

lados?

15x2

x1 x3

Page 69: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

68

f) Un rectángulo tiene por dimensiones el triple y el quíntuplo del lado de un cuadrado.

Calcula las dimensiones de ambos cuadriláteros, sabiendo que la diferencia entre sus áreas

es de 2015 cm2.

8) Resolver y representar gráficamente la solución de las siguientes inecuaciones:

a) 5x < –5 b) 2x + 3 7 c) 823

42

x

x

d) 482

1x y

3

7

3

5

x e) 523 x o 812 x

f) xxx 31035 y 3335 22 xxx

9) Resolver los siguientes problemas:

a) Recuerda que cada lado de un triángulo es menor que la suma de los otros dos y mayor que

su diferencia. Imagina que x e y son dos lados de un triángulo cuyo valores son x = 1 e y =

12. ¿Qué podrías decir del lado z?

b) Un padre, para estimular a su hijo a que estudie matemática, promete darle $3 por cada

ejercicio bien resuelto, pero, por cada uno que esté mal, el hijo le dará $2. Ya van por el

ejercicio 26 y el muchacho recibe de su padre $38. ¿Cuántos ejercicios ha resuelto bien y

cuántos mal?

c) Un matrimonio dispone de $130 para asistir a un espectáculo con sus hijos. ¿Cuántos

pueden ser éstos si ese dinero no alcanza para tomar localidades de $25 cada una y, en

cambio, sobra para tomar localidades de $20 cada una?

d) Por ahora yo tengo el doble de tu edad. Pero cuando tú tengas mi edad, la suma de los

cuadrados de nuestras edades será 26 veces la suma de las mismas. ¿Cuál es la edad de cada

uno?

Page 70: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

69

FUNCIONES

Problema 1: Observar el siguiente gráfico, extraído del diario La Nación del 6 de marzo de

2001, que representa la producción y la venta de automóviles en nuestro país durante un año.

¿En qué mes fue la máxima producción de autos?

a. ¿En qué período cayeron más las ventas?

b. ¿En qué meses hubo mayor diferencia entre la producción y la venta de automóviles?

Problema 2: Leer el prospecto de un remedio antitérmico para niños (FIGURA 1)

a. ¿Qué cantidad de remedio le daría a un bebé que pesa 5 kg y tiene 37,7º de temperatura?

b. ¿Cuánto pesa Nico si debe tomar 12 ml cada 6 horas y tiene 38,2º de temperatura?

Problema 3: Los teléfonos actuales tienen asignados a sus teclas letras y números, por lo que a

muchas empresas que contratan el servicio de 0800 le asignan números fáciles de memorizar

para sus clientes. Así, por ejemplo, una escuela podría tener el 0800372852, que se corresponde

con el 0800ESCUELA.

a. ¿Qué número habrá que marcar para comunicarse con el 0800HELADOS?

b. ¿A qué palabra corresponderá el 08001843367?

Es usual encontrar información presentada en forma de gráficos. Ellos nos muestran

relaciones entre distintas variables, como por ejemplo: la recaudación impositiva

durante los meses de un año, la esperanza de vida en cada país, el crecimiento de una

población de bacterias en un determinado período, entre otras.

Muchas de estas relaciones son funciones; en algunos casos, es posible describirlas a

través de fórmulas matemáticas, los cuales permiten predecir comportamientos.

Page 71: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

70

Problema 1: Para responder a las preguntas de este problema, debemos analizar el gráfico. En

él se representan los meses del año en el eje horizontal y las unidades productivas o vendidas,

en el vertical. Si bien no está indicada la escala en el eje vertical, se incluye dentro del gráfico

algunos puntos que nos permiten deducir que cada división en ese eje representa 500 unidades

y que comienza desde el 10000.

Cuando nos proponemos averiguar en qué mes fue la máxima producción de autos, tenemos que

buscar el punto en que la producción alcanzó su mayor valor.

Esto sucedió en marzo de 2000.

Observemos en el gráfico correspondiente a las ventas que entre octubre y noviembre de 2000

fue el período en el que más cayeron las ventas.

Para la tercera pregunta, analizamos ambos gráficos simultáneamente. La mayor distancia

entre las curvas se observa en noviembre de 2000; por lo tanto, es en ese mes cuando se produjo

la mayor diferencia.

Problema 2: Si el bebé tiene menos de 38º, tenemos que seguir la primera indicación: debemos

darle 0,3 ml ∙ 5 = 1,5ml cada 6 horas. Nico, que tiene más de 38º y hay que darle 12ml cada 6

horas, pesa 24 Kg, pues 0,5 ∙ 24 = 12.

Problema 3: Cuando estudiamos la relación planteada en este problema, vemos que es sencillo

contestar a la primera pregunta porque a cada letra le corresponde un número; por lo tanto,

para la heladería marcamos 08004352367. En cambio, no sucede lo mismo en el caso de la

pregunta b. pues a cada número le corresponde más de una letra y, por lo tanto, no hay una

única combinación de letras que se vincule a este número telefónico. Por ejemplo, TIDENS y

UGFENS, entre otros.

Función

En todos los problemas anteriores se vinculan, en distintas situaciones, varias variables: el

gráfico del primer problema relaciona la producción por un lado, y por otro, las ventas en el

mismo período; en el prospecto se vincula la cantidad de remedio al peso del chico y su

temperatura axilar.

En cada uno de estos problemas consideramos dos variables, por ejemplo, la cantidad de autos

vendidos y cada mes del año. En este caso decimos que la cantidad de autos es la “variable

dependiente” del mes considerado, que es la “variable independiente”.

Vemos que en los dos primeros problemas podemos responder a las preguntas porque a cada

valor de la variable independiente le corresponde un único valor de la variable dependiente.

En cambio, en el último ésto sucede sólo con la relación que le asigna a cada letra el número

que está en la misma tecla por haber varias posibilidades. Además, al 1 y al 0 no se les asigna

ninguna letra. Nos interesa analizar ahora aquellas relaciones que vinculan todos y cada uno

de los valores de la variable independiente a un único valor de la dependiente.

Page 72: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

71

Por ejemplo:

xxxg 65 Es función porque si a cada número real lo elevamos a la quinta y le restamos

seis veces ese mismo número, obtenemos siempre un número real.

Problema 4: Roberto tiene 2 m de varilla de madera para armar un marco rectangular.

Consideren las posibles medidas del marco y completen la siguiente tabla que vincula el ancho

al largo del mismo:

Largo del marco (metros) 0,4 1

Ancho del marco (metros) 0,5 1,5

El marco de Roberto puede medir, por ejemplo:

Roberto tiene muchas posibilidades para construir su marco, pero no puede fabricar uno de 1 m

de largo ni de 1,5 m de ancho, porque en estos casos no tendría suficiente varilla para los cuatro

lados.

Las medidas del marco de Roberto deben ser más pequeñas que 1. Por lo tanto, los valores que

puede medir el largo son los números reales entre 0 y 1.

Dominio e imagen de una función

Por ejemplo, el dominio de la función del problema 4 es el conjunto de los números reales entre

0 y 1.

Una relación entre dos variables es función si a cada valor de la variable

independiente le corresponde un único valor de la variable dependiente.

0,5 cm

0,5 cm

0,4 cm

0,6 cm

El dominio de una función f es el conjunto de todos los valores que puede tomar

la variable independiente.

Se denota Dom f o Df.

Page 73: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

72

Si analizamos ahora los valores que puede tomar la variable dependiente en el problema

anterior, observemos que tiene las mismas limitaciones que la independiente. Por lo tanto, los

valores que puede pomar la variable dependiente son los números reales entre 0 y 1.

Por ejemplo, la imagen de la función que vincula el precio de venta de un artículo a su precio de

costo es el conjunto de los números positivos con dos cifras decimales.

Analicemos el dominio de algunas funciones numéricas definidas por fórmulas:

73 xxf

Todas las operaciones que se deben efectuar para hallar la imagen de un valor a través de esta

función son válidas para todo número real, por lo tanto, Dom f = ℝ

Analicemos su imagen: tomemos un número real y cualquiera.

¿Está en la imagen? Para responder a esta pregunta, debemos analizar si existe algún número

x tal que:

3

7 73

yxxyxfy

Este x existe siempre para todo y porque las operaciones son válidas para cualquier número

real. Por lo tanto, la imagen de esta función es el conjunto de todos los números reales. Im f = ℝ

x

xg1

Como la división por 0 no está definida, el dominio de esta función es el conjunto de todos los

números reales distintos de 0, simbólicamente: Dom g = ℝ− 0 .

Si llamamos y al valor que le corresponde a x a través de esta función, para hallar el conjunto

imagen tenemos que analizar qué valores toma y. Para ello escribimos:

yx

xy

1

1

La imagen de una función f es el conjunto de todos los valores que toma la variable

dependiente.

Se denota Im f o If

El conjunto de llegada es un conjunto en el cual está incluida la imagen.

La ley de formación puede estar dada en el lenguaje natural a través de una tabla,

una fórmula o un gráfico cartesiano.

Para definir una función deben darse el dominio, el conjunto de llegada y una ley de

formación

Page 74: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

73

Este número x existe para cualquier y distinto de cero. Por lo tanto, la imagen de esta función

es: Im g = ℝ− 0 .

Tal como lo hicimos en este ejemplo, es muy usual llamar y al valor que le corresponde a x a

través de una función. Por este motivo, cuando se define una función a través de su fórmula se

usa indistintamente f x o y .

Problema 5: La doctora Diet, nutricionista, registra una vez al mes, en un gráfico cartesiano,

la variación del peso en gramos de sus pacientes en función del tiempo.

Este gráfico corresponde a la señora Pacient, quien comenzó la dieta con 98 kg y realiza su

consulta a la doctora Diet una vez por mes.

a. ¿Cuánto pesaba en la tercera consulta?

b. ¿Cuánto aumentó entre el cuarto y el quinto mes?

c. ¿En qué mes esta paciente alcanzó su menor peso? ¿Y el Mayor?

d. ¿En qué períodos bajó de peso?

e. ¿En qué período subió de peso?

f. ¿Hubo algún momento en el que su peso no varió?

g. ¿En qué meses la paciente volvió a pesar lo mismo que al comenzar el tratamiento?

Para responder a las preguntas anteriores debemos tener en cuenta que el gráfico representa la

variación del peso de la paciente, es decir que el punto (3; -2000) nos indica que en el tercer mes

bajó 2000 g.

En la tercera consulta pesaba 96 kg pues había bajado 2 kg. Entre el cuarto y el quinto mes

aumentó un kilo. Si observamos globalmente la gráfica, vemos que desde que comenzó la dieta

y hasta el segundo mes, fue bajando de peso; a partir de allí subió de peso hasta la octava

Page 75: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

74

consulta, luego bajó hasta la vista siguiente y volvió a aumentar durante el décimo mes para

luego seguir bajando durante el resto del período registrado.

También podemos ver que en la sexta, novena y undécima consultas pesaba lo mismo que en el

momento que comenzó su tratamiento ya que la variación que muestra el grafico es 0.

Ceros o raíces de una función

Por ejemplo, en el caso de la función que estamos estudiando, los ceros corresponden a los

meses en que la señora Pacient volvió a su peso inicial, es decir que la variación fue nula en

esos meses, lo que ocurrió al sexto, noveno y undécimo meses.

¿Cómo hallamos los ceros en una función dada por su fórmula?

Analicemos la función 𝑓: ℝ → ℝ / 42 xxf . Estamos buscando los valores de x para los

cuales y vale 0; por lo tanto, simbólicamente escribimos: 2x y 2x

Los ceros o raíces de una función son aquellos valores del dominio cuya imagen es cero.

Recordemos…

Los intervalos son conjuntos de números reales

definidos de la siguiente manera, según sean

cerrados

bxayxxba /;

Semiabiertos

bxayxxba /;

bxayxxba /;

bxyxxb /;

axyxxa /;

Abiertos

bxayxxba /;

bxyxxa /;

bxyxxb /;

¿Cómo se lee…?

: para todo

: existe

: pertenece

: entonces

/ : tal que

: unión

Page 76: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

75

Intervalos de crecimiento y decrecimiento

Por ejemplo, si analizamos la función que relaciona la variación del peso de la señora Pacient

con el tiempo, los intervalos de crecimiento son: (2; 3), (4; 8) y (9; 10), y los intervalos de

decrecimiento son (0; 2), (8; 9) y (11; 18).

Máximos y mínimos

Por ejemplo:

(2; 5) es el conjunto de todos los números reales entre 2 y 5, si lo representamos en la

recta numérica:

Un intervalo de crecimiento de una función es un subconjunto I del

dominio para el cual a mayores valores de la variable independiente le

corresponden mayores valores de la variable dependiente. Simbólicamente

escribimos:

afxfaxsiIaIx :,

Un intervalo de decrecimiento de una función es un subconjunto I del dominio

para el cual a mayores valores de la variable independiente le corresponden

menores valores de la variable dependiente. Simbólicamente escribimos:

afxfaxsiIaIx :,

La función f alcanza un máximo absoluto en el punto a del dominio si para todo x

perteneciente al mismo, x a, la imagen de x es menor que la de a. simbólicamente

escribimos:

afxfaxDfx :,

La función f alcanza un mínimo absoluto en el punto a del dominio si para todo x

perteneciente al mismo, x a, la imagen de x es mayor que la de a. simbólicamente

escribimos:

afxfaxDfx :,

0 2 5

Page 77: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

76

Por ejemplo, en el caso de la variación del peso de la señora Pacient, el máximo absoluto se

produce el octavo mes y es de 750 g y, en 18, la función alcanza un mínimo absoluto que es de

-3500 g.

Conjunto de positividad y negatividad

Por ejemplo, en el caso de la señora Pacient, el conjunto de positividad es C+ = (6; 9) (9; 11).

Por ejemplo, en la función que estamos estudiando, los intervalos para los cuales las imágenes

son negativas son (0; 6), y (11; 18), es decir que C- = (0; 6) (11; 18).

Funciones pares y funciones impares

El conjunto de positividad (C+) de una función es el subconjunto del dominio

cuyas imágenes son número positivos.

El conjunto de negatividad (C-) de una función es el subconjunto del dominio

cuyas imágenes son número negativos.

Una función f es par si para todo valor de x pertenece al dominio se verifica que:

xfxf .

Page 78: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

77

Por ejemplo, la función 𝑓:ℝ → ℝ 𝑓 𝑥 = 𝑥2 − 9 es par porque para todo x real se cumple:

xfxxf 92

Por ejemplo, la función 𝑓:ℝ → ℝ 35/ xxf es impar porque para todo x real se

cumple:

xfxxxf 33

55

Problema 6: El electrocardiograma es un estudio que registra, durante un tiempo, la actividad

eléctrica del corazón.

Analizar la curva y describir las particularidades que se observan.

Si observamos el gráfico, vemos que una parte de él se repite con regularidad. Cada veinte

cuadraditos, aproximadamente, se vuelve a repetir la misma curva. Decimos que ésta es una

función periódica. En esta caso el período es de poco menos que veinte cuadraditos.

Funciones Periódicas

Por ejemplo, la función f representada a continuación es periódica porque xfxf 8 , para

todo x perteneciente a su dominio. O sea, se repite cada ocho unidades.

Una función f es impar si para todo valor de x pertenece al dominio se verifica que:

xfxf .

Una función f es periódica si existe un número p tal que xfpxf , donde p es

el período

Page 79: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

78

Problema 7: Una aerolínea registró la altura a la que vuela un avión que parte de un

aeropuerto ubicado a nivel del mar, durante un viaje. Se representó de la siguiente manera:

a. Si el avión parte de un aeropuerto que está a 1000 m de altura respecto del nivel del

mar y realiza un viaje en las mismas condiciones que el anterior, ¿cómo será el grafico

de la función que vincula su altura respecto del nivel del mar al tiempo?

b. ¿Cómo será el gráfico de otro avión que sale desde el nivel del mar y realiza un viaje en

las mismas condiciones pero veinte minutos más tarde que el primero?

Desarrollo:

a. Como las variaciones de la altura son iguales, la altura inicial será 1000 m mayo y lo

mismo sucederá con todas las alturas que alcance el avión durante su vuelo. Por lo

tanto, el gráfico tiene la misma forma pero está corrido 1000 m hacia arriba.

b. En este caso lo que se modifica es la hora de partida, por esto alcanzará exactamente las

mismas alturas que el primer avión pero 20 minutos después. En el gráfico quedará la

misma curva pero corrida 20 minutos hacia la derecha.

Representemos en un mismo par de ejes los tres gráficos para verlo mejor:

Page 80: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

79

Corrimientos

Hemos representado la función a(t) que vincula la altura, a, del avión al tiempo expresado en

horas de día, t.

Cuando el avión sale a 1000 m sobre el nivel del mar, a cada valor de la variable dependiente le

sumamos los 1000 m iniciales, es decir, estamos representando

1000ta

En cambio, en el caso del avión que sale 20 minutos más tarde, se modifica la variable

independiente.

Si llamamos (t) a la función que vincula la altura del tercer avión al tiempo de viaje del mismo,

¿qué relación hay entre el tiempo de viaje desde que parte este avión y el tiempo del primero?

Veamos en una tabla:

T = t – 20

Como las alturas son las mismas: 20 taTb

Analicemos otro tipo de corrimientos.

Problema 8: Un corredor está recorriendo una pista circular. El siguiente gráfico representa la

distancia hasta la largada en función del tiempo.

T 0 20

t 20 40

Page 81: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

80

a. ¿Cómo será el gráfico de otro corredor que está recorriendo la misma pista pero lo hace

en la mitad del tiempo?

b. Comparen este último gráfico con el anterior.

El nuevo gráfico se repite en la mitad del tiempo que el anterior, es decir que la gráfica se

“redujo a la mitad”.

Llamemos f(t) a la función que vincula la distancia a la largada del primer corredor al tiempo y,

análogamente, g(t) a la función correspondiente al segundo corredor.

Como vemos en el gráfico, g(t) y f(t) toman los mismos valores en 𝑥 = 0, 3, 6, 9 𝑦 12 , es decir en

los ceros de las funciones.

Ceros de f: 0, 6, 12, 18… Ceros de g: 0, 3, 6, 9…

Vemos que el primer corredor tarda en dar una vuelta el doble de tiempo que el segundo. Por lo

tanto: g(t) = (2t)

Conclusiones

El gráfico de f(x-a) es el gráfico de f(x) corrido a unidades hacia la derecha

sobre el eje x.

El gráfico de f(x) +a es el gráfico de f(x) corrido a unidades hacia arriba del

eje y.

El gráfico de f(ax) es el gráfico de f(x) “reducido ” o “ampliado” a veces según

sea a mayor o menor que 1, respectivamente.

,f x a f x a y f ax se denominan corrimientos de f x

Page 82: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

81

TRABAJO PRÁCTICO - FUNCIONES

1) La siguiente tabla muestra la relación entre dos variables. ¿Esta relación es una función?

En caso afirmativo indicar dominio e imagen.

2) Indicar el dominio de cada una de las siguientes funciones:

a. Precio de un paquete de galletitas en función del peso.

b. Cantidad de harina necesaria para una receta en función de las porciones que se quiere

hacer.

c. Variación de la temperatura en una ciudad en función del tiempo.

3) a. ¿Cuáles de los siguientes gráficos corresponden a funciones 𝑓:ℝ → ℝ? Justificar sus

respuestas.

b. Indicar el dominio y la imagen de las funciones anteriores.

4) Vincular cada función a su dominio:

5x

xxf

25 xxg

xxxh 32

4

22

x

xxi

;25

;5

ℝ− −5

ℝ+

;44;0

ℝ 2;2

x 3 4 5 6 7 8

y 5 5 5 5 5 5

Page 83: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

82

5) Completar los siguientes gráficos de acuerdo con la información que se da de cada uno:

a. h es periódica con período = 4

b. g es impar

6) Considerar las funciones del ejercicio 5. Graficar g(x+3); 4.f(x); h(2x). Indicar si siguen

cumpliendo las condiciones que tenían las funciones originales.

7) En la región de la precordillera hay un arbusto que sirve de alimento a la fauna local. Un

grupo de científicos que teme por su extinción decidió realizar un relevamiento de datos

cuyos resultados fueron volcados en una gráfica.

Observar la gráfica y responder las siguientes preguntas:

c. f es par

Page 84: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

83

a) ¿Qué variables se tuvieron en cuenta para realizar la gráfica? (identificar variable

independiente y variable dependiente)

b) Definir en forma coloquial una función g que se corresponda con la gráfica.

c) ¿Cuántos ejemplares por m2 hay a 400 m de altura sobre el nivel del mar?

d) ¿A qué altura sobre el nivel del mar hay 2 ejemplares por m2?

e) ¿Cuál es el mayor número de ejemplares del arbusto, que hallaron por m2?

f) ¿Qué ocurre con el arbusto a partir de los 350 m sobre el nivel del mar?

g) ¿Cuál es la máxima altura sobre el nivel del mar en la que fueron realizadas las

mediciones?

h) ¿Cuál es el dominio de la función g? ¿Cuál es la imagen de g?

8) En el siguiente gráfico aparece el peso de dos hermanos, Nicolás y Lucía, a lo largo de los

años. El peso de Nicolás está representado por la línea azul y el de Lucía por la línea rosa.

a) ¿Cuál era el peso de Nicolás a los 8 años? ¿Y el de Lucía a los 13?

b) ¿A qué edad pesaba Lucía 55 kg? ¿Y Nicolás 70 kg?

c) ¿Cuándo pesaba Nicolás más que Lucía y cuándo pesaba menos?

Page 85: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

84

d) ¿Cuándo pesan lo mismo?

e) ¿Cuál fue el aumento de peso de Lucía entre los 3 y los 12 años?

f) ¿Cuál fue el aumento de peso de Nicolás en el mismo período?

g) ¿Cuál fue el aumento de peso de cada hermano entre los 12 y los 16 años?

h) ¿Quién disminuyó de peso, y en qué período?

9) Para evaluar la temperatura en cada tiempo t (en hs) de una cámara en donde se guardaron

semillas de maíz se realizaron registros de la temperatura (en °C) de la misma, en forma

continua, desde las 6 de la tarde de un día y durante las primeras 6 hs del día siguiente.

Para resolver esta situación se puede considerar el gráfico de la función:

Para los registros de temperatura observamos cuatro situaciones bien deferentes en la

evolución de la temperatura a medida que transcurre el tiempo:

hasta dos horas antes de la medianoche, es decir 26 t , la temperatura fue

aumentando.

Luego, y hasta la medianoche, 02 t , la temperatura fue disminuyendo.

Entre la medianoche y la hora 1, es decir 10 t , la temperatura volvió a aumentar,

hasta llegar a los 1°C

a) ¿Cuál fue la máxima temperatura alcanzada?;

b) ¿Cuál fue la mínima temperatura alcanzada?;

c) Expresar cuáles son los intervalos de crecimiento de la función graficada y cuáles de

decrecimiento.

d) ¿En qué intervalo la temperatura permanece constante?

10) Un club dispone de $50.000 mensuales para el sueldo de sus deportistas. La política del club

es que la plata disponible se divide en partes iguales entre los deportistas que asistieron

regularmente todo el mes.

Page 86: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

85

a) Completar la siguiente tabla (teniendo en cuenta que todos los deportistas cobran lo

mismo).

Cantidad de Deportistas 20 40 80 100 125

Sueldo de cada deportista

b) Realizar un gráfico para representar la tabla anterior. ¿Tiene sentido unir los puntos por

medio de una línea continua? Justificar la respuesta dada.

c) Hallar una fórmula que le permita al tesorero del club calcular lo que cobra cada

deportista en función de la cantidad de deportistas que asistieron al club.

d) Teniendo en cuenta que el cupo máximo de deportistas es de 125. Hallar el dominio y la

imagen de la función encontrada

e) Si de lo que cobra, cada deportista debe pagar $20 de impuestos, ¿cuál es el número

razonable de deportistas que debe tener el club para que cada uno cobre como mínimo $300?

Page 87: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

86

TRIGONOMETRÍA

La palabra trigonometría proviene del griego: trigonos (triángulo) y metria (medida). En sus

orígenes esta rama de la matemática se utilizó para resolver problemas de agrimensura y

astronomía, pero con el desarrollo de la ciencia se ha convertido en un instrumento

indispensable en la física, la ingeniería, la medicina y todo otro proceso en el que se encuentren

comportamientos que se repiten cíclicamente. Sirve para estudiar fenómenos vibratorios, como

por ejemplo la luz, el sonido, la electricidad., etc.

Sistemas de Medición de Ángulos

Para medir ángulos pueden adoptarse distintas unidades. Los sistemas más usados son:

Sistema sexagesimal, cuya unidad de medida angular es el grado sexagesimal, que es la

noventa-ava parte del ángulo recto y se simboliza 1º. La sesenta-ava parte de un grado es un

minuto (1’) y la sesenta-ava parte de un minuto es un segundo (1”).

"160

'1'1

60

º11

90

rectoángulo

Un ángulo llano mide 180º y un giro completo mide 360º.

Sistema circular o radial, cuya unidad de medida es el radián. La proporcionalidad que

existe entre la longitud s de los arcos de dos circunferencias concéntricas cualesquiera

determinados por un ángulo central α y los radios r correspondientes, permite tomar como

medida del ángulo el cociente r

s

radio

arco . Un ángulo central de 1 radián es aquel que

determina un arco que tiene una longitud igual al radio.

Ejemplo: Si β determina un arco de 6 cm en una circunferencia de 2 cm de radio, entonces la

medida en radianes de β es: 32

6

cm

cm

r

s. En el sistema circular, β mide 3 radianes, o decimos

que mide 3, sin indicar la unidad de medida.

La medida en radianes de un ángulo de un giro es

2..2

r

r.

s = r, por lo tanto 1r

s .

Un radián es la medida del ángulo con

vértice en el centro de la circunferencia y

cuyos lados determinan sobre ella un

arco s de longitud igual al radio r.

Page 88: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

87

La medida en radianes de un ángulo llano, que es la mitad de un giro, es

2

..2

La medida en radianes de un ángulo recto es 2

.

Para relacionar un sistema de medición con otro, observemos la siguiente tabla:

Ángulo Sistema

sexagesimal

Sistema

circular

1 giro 360º 2

llano 180º

recto 90º /2

¿A cuántos grados sexagesimales equivale un radián?

Haciendo uso de las proporciones y teniendo en cuenta la medida del ángulo llano, tenemos

π 180º

1 "45'17º57º1801

Nota: es aproximadamente igual a 3,14. Un ángulo de radianes equivale a un ángulo de

180º. Pero 180.

Actividad 1:

a) Expresar en radianes las medidas de los ángulos, si es posible, utilizando fracciones de :

30º 45º 60º 120º

b) Expresar en grados sexagesimales los siguientes ángulos medidos en radianes:

2 1/2 /2 2

c) Efectuar las siguientes operaciones.

Hallar el ángulo complementario de 56º41’27’’

Hallar el ángulo suplementario de 102º25’

¿Cuánto mide el ángulo que supera en 12º33’ a la quinta parte de 39º40’ ?

El minutero de un reloj es de 12 cm de largo. ¿Qué recorrido realiza la punta de la

manecilla en 20 minutos?

Razones trigonométricas de un ángulo agudo

Recordemos las definiciones de las razones trigonométricas.

hipotenusa

opuestocatetosen

hipotenusa

adyacentecatetocos

C

B

A

Page 89: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

88

adyacentecateto

opuestocatetotg

Observación:

Estas razones dependen sólo del ángulo y no de las medidas de los lados del triángulo

construido.

Las definiciones de las razones trigonométricas de ángulos agudos pueden extenderse para

cualquier ángulo. Para eso, consideramos el ángulo en el plano cartesiano, haciendo coincidir

su vértice con el origen de un sistema cartesiano ortogonal, y su lado inicial con el semieje

positivo de las x.

También definimos las razones trigonométricas recíprocas de las anteriores, llamadas

cosecante, secante y cotangente:

0

0

00 opuesto cateto

adyacente catetocot

adyacente cateto

hipotenusasec

opuestocateto

hipotenuacosec

y

xg

x

r

y

r

Observación:

Las fórmulas anteriores son válidas cuando no se anulen los denominadores.

También se verifican las siguientes relaciones

tg

1gcot

cos

1sec

sen

1eccos

cos

sentg

r

x

OP

Pdeabscisa

hipotenusa

adyacentecateto 0cos

00

0

0 xsix

y

adyacentecateto

opuestocatetotg

r

y

OP

Pdeordenada 0

hipotenusa

opuestocatetosen

y0 P r

x0

x0

P y0

r

Page 90: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

89

Ejemplo: Queremos determinar los valores de las relaciones trigonométricas de un ángulo

cuyo lado terminal pasa por el punto P = (3 , 4)

1.

..

.

..

.)(

.)(

.)(

.).(

.)(

.).(

22

2

2

2

2

2

2

hip

adycat

hip

opcat

hip

hip

hip

adycat

hip

opcat

Resulta, entonces: (sen )2 + (cos )2 = 1 donde por comodidad escribimos sen 2 + cos 2 = 1

y que llamamos identidad pitagórica.

Esta identidad, por ejemplo, nos permite calcular las funciones trigonométricas de un ángulo α

sabiendo que es agudo y que 5

3sen .

Entonces, si sen2 + cos2 = 1 cos2 = 1 sen2 2s e n1c o s

y como < /2 5

4

25

16

5

31coscoscos

2

3

41cot

4

5

cos

1sec

3

51cos

4

3

5

45

3

cos

tgg

senec

sentg

y

Para un ángulo cualquiera, puede aplicarse el

teorema de Pitágoras:

(cat. op.)2 + (cat. ady.)2 = (hipotenusa)2

Dividimos ambos miembros por (hipotenusa)2:

x0 = 3, y0 = 4

4

3gcot

3

5sec

4

5eccos

3

4tg

5

3cos

5

4sen

54)3(r 22

4 P

r

-3 x

y0 P

x0

Page 91: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

90

Actividad 2: Sabiendo que cos = 3

2, hallar las restantes relaciones trigonométricas de .

Con frecuencia se utilizan expresiones que vinculan a cada una de las relaciones

trigonométricas con las demás para poder utilizar, en cada caso, la expresión más conveniente.

Por ejemplo, podríamos expresar la tangente de en función del coseno:

cos

cos1:

cos

2 tgpitagóricaidentidadlautilizandoy

sentg .

Análogamente, podemos expresar el coseno de en función de la tangente de :

1cos

1

cos

cos1

coscos 2

2

2

22

2

22

tgtg

sentg

sentg

22

2

2

2

1

1cos

1

1cos

cos

11

tgtgtg

Más adelante veremos cómo seleccionar el signo del resultado.

Actividad 3:

a) Expresar la secante de en función de la cosecante de .

b) Expresar la tangente de como función del seno de .

La circunferencia trigonométrica – Ángulos orientados

Cuando trabajamos en radianes, las medidas de los ángulos son números reales. Si definimos

ángulos orientados esta medida puede tomar valores negativos. Al trabajar con un ángulo en un

sistema de coordenadas cartesianas, éste está generado por la rotación de una semirrecta o rayo

que parte del semieje positivo de las x.

Si el lado gira en sentido contrario a las agujas del reloj, se dice que el ángulo es positivo. Es

negativo cuando está generado en sentido horario.

Puede, además, realizar más de un giro completo.

Para referirnos a su ubicación, consideramos el plano cartesiano divido en cuatro sectores,

llamados cuadrantes y una circunferencia con centro en el origen y radio 1 que llamaremos

circunferencia trigonométrica.

En la figura, como r = 1 tenemos

que:

000 y

1

y

r

ysen el

segmento de ordenadas está

relacionado con el sen

000 x

1

x

r

xcos el

segmento de abscisas está

relacionado con el cos

I cuadrante II cuadrante

P1

III cuadrante IV cuadrante

P0

P2

P3

δ

P1

En la figura, como r = 1 tenemos

que:

000 y

1

y

r

ysen el segmento

de ordenadas está relacionado con el

sen

000 x

1

x

r

xcos el segmento

de abscisas está relacionado con el

cos

Page 92: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

91

Para hallar el segmento asociado al sen , se construye en el segundo cuadrante el triángulo

rectángulo con las componentes de P1 y el segmento de ordenadas corresponde a seno de .

Análogamente sucede con los ángulos del tercer y cuarto cuadrante, donde el segmento de

ordenada se asocia con el seno del ángulo y el segmento de abscisa, con el coseno del ángulo.

Los signos de los valores de las relaciones trigonométricas de los distintos cuadrantes dependen

de los signos de las coordenadas del punto sobre el lado terminal del ángulo.

Esta información se resume en la siguiente tabla, que podrá completar:

Actividad 4:

a)

sen cos tg cosec sec cotg

I + + +

II

III

IV

b) Si 52

9 , ¿qué se puede asegurar respecto del signo de sen , cos y tg ?

Razones trigonométricas de ángulos notables

Para los ángulos de 0, /2, y 3/2, teniendo en cuenta las coordenadas del punto P asociado a

cada ángulo en la circunferencia trigonométrica, podemos deducir y completar:

Actividad 5:

Para los ángulos de /6, /4 y /3 radianes pueden calcularse las razones trigonométricas

usando recursos geométricos. Damos aquí una tabla que contiene los valores de los ángulos

notables pertenecientes al primer cuadrante.

0 /2 3/2

P (0; 1)

sen 1

cos 0

tg no existe

-1

-1

1

1

0

Page 93: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

92

0 6

4

3

2

sen 0 2

1

2

2

2

3 1

cos 1 2

3

2

2

2

1 0

tg 0

3

3 1 3

no está

definida

Actividad 6:

1. Construir, observar la circunferencia trigonométrica y completar en los casos en que

existan:

sec0cos)5()4cos(2

ectgsen

2. Calcular, usando la tabla de ángulo notables:

a)

6

5sen b)

4

5cos c)

3

2tg d)

6

7cos ec

Algunas Identidades Trigonométricas

Las siguientes identidades son de utilidad para distintos procedimientos, como cálculos de

límites e integrales. No es necesario memorizarlas porque suelen estar incluidas en tablas de

derivadas , integrales, etc. Simplemente enumeramos sólo algunas de ellas.

Para y cualesquiera:

sen ( ) = sen cos cos sen

cos ( + ) = cos cos sen sen

cos ( ) = cos cos + sen sen

tgtg

tgtgtg

1)(

Para cualquier :

sen (2) = 2 sen cos

cos (2) = cos2 sen2

Page 94: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

93

21

2)2(

tg

tgtg

2

cos1

2

sen

2

cos1

2cos

cos12

sentg

2

)2(cos1cos2

2

)2(cos12

sen

Actividad 7: Verificar las siguientes identidades (se aconseja trabajar en cada miembro de la

igualdad sustituyendo las expresiones por otras identidades conocidas hasta llegar a una

igualdad evidente).

Ejemplo:

cos

cos1

cos1

cos

11sec

:ónDemostraci

cos

cos1sec

sensensensen

sensen

a)

sentg

1

cossec b)

2

22

cos

cot1

ec

gsen

Resolución de Triángulos rectángulos

Resolver trigonométricamente un triángulo rectángulo consiste en, dados algunos elementos del

triángulo, obtener los restantes.

Ejemplo: Resolver el triángulo rectángulo dados la hipotenusa a = 20 cm y 𝐵 = '35º28

a b

c A B

C

Entonces los datos son: a y B y las incógnitas C , b y c.

Como C y B son complementarios, resulta:

𝐶 = 90º − 𝐵 = 61º 25’

Page 95: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

94

Como sen B = cmcmBsenaba

b568,94784,0·20ˆ

Además, cos cmcmBaca

cB 562,178781,0·20ˆcosˆ

Actividad 8:

a) Para un triángulo rectángulo similar al del ejemplo, hallar c, B y C sabiendo que a = 15 cm. y

b = 9 cm.

b) Un globo sujetado por un cable de 180 m. es inclinado por el viento formando el cable un

ángulo de 60º con la horizontal. Calcular la distancia del globo al suelo.

c) Calcular la longitud que debe tener una escalera para que apoyada en una pared alcance

una altura de 2,85 m al formar con el plano de la base un ángulo de 58º 1’. Rta: 3,36 m.

d) Un alambre carril recto de 320 m. une dos estaciones A y B y tiene una pendiente de 0,532.

Calcular la diferencia de altura sobre el nivel del mar entre A y B. Rta: 150,23

m.

Page 96: Cuadernillo matemática ingreso2013

Curso de Nivelación en Matemática

95

BIBLIOGRAFIA

Altman, Silvia - Comparatore, Claudia - Kurzrok, Liliana. “Matemática2: Funciones 1”. Ed.

Longseller, 2005.

Altman, Silvia - Comparatore, Claudia - Kurzrok, Liliana. “Matemática 2: Funciones 2”. Ed.

Longseller, 2005.

Bocco, Mónica. “Funciones elementales para construir modelos matemáticos”. Ministerio de

Educación de la nación. Instituto Nacional de Educación Tecnológica, 2010.

Carnelli, Gustavo – Novembre, Andrea – Vilariño, Alejandra. “Función de gala”. Ed. El

Hacedor, 1999.

Colera, José- Gaztelu, Ignacio - de Guzmán, Miguel - Oliveira, María José. “Matemáticas 2”,

Ed. Anaya, 1997.

Colera, José - García, Juan Emilio - Gaztelu, Ignacio- de Guzmán, Miguel- Oliveira, María José.

“Matemáticas 3”. Ed. Anaya, 1995.

Colera, José- García, Juan Emilio - Gaztelu, Ignacio- de Guzmán, Miguel - Oliveira, María José.

“Matemáticas 4”. Ed. Anaya, 1995

De Guzmán, Miguel - Colera, José - Adela Salvador. “Bachillerato 2”. Ed. Anaya, 1987.

De Guzmán, Miguel - Colera, José - Adela Salvador. “Bachillerato 3”. Ed. Anaya, 1988.

Itzcovich, Horacio – Novembre, Andrea. “M1 matemática”. Ed. Tinta Fresca, 2006.

Itzcovich, Horacio – Novembre, Andrea. “M2 matemática”. Ed. Tinta Fresca, 2006.