Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U...

56
Images of the Origin of Mass Craig Roberts Physics Division

Transcript of Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U...

Page 1: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Images of theOrigin of Mass

Craig Roberts

Physics Division

Page 2: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

2

Collaborators: 2011-Present1. Rocio BERMUDEZ (U Michoácan);2. Xiomara GUTIERREZ-GUERRERO (U Michoácan);3. S. HERNÁNDEZ (U Michoácan);4. Trang NGUYEN (KSU);5. Khépani RAYA (U Michoácan);6. Hannes ROBERTS (ANL, FZJ, UBerkeley);7. Chien-Yeah SENG (UW-Mad)8. Kun-lun WANG (PKU);9. Chen CHEN (USTC);10. J. Javier COBOS-MARTINEZ (U.Sonora);11. Mario PITSCHMANN (ANL & UW-Mad);12. Si-xue QIN (U. Frankfurt am Main);13. Jorge SEGOVIA (ANL);14. David WILSON (ODU);15. Lei CHANG (U.Adelaide); 16. Ian CLOËT (ANL);17. Bruno EL-BENNICH (São Paulo);

MENU 2013: 30/09-04/10

18. Adnan BASHIR (U Michoácan);19. Stan BRODSKY (SLAC);20. Gastão KREIN (São Paulo)21. Roy HOLT (ANL);22. Mikhail IVANOV (Dubna);23. Yu-xin LIU (PKU);24. Michael RAMSEY-MUSOLF (UW-Mad)25. Alfredo RAYA (U Michoácan);26. Sebastian SCHMIDT (IAS-FZJ & JARA);27. Robert SHROCK (Stony Brook);28. Peter TANDY (KSU);29. Tony THOMAS (U.Adelaide)30. Shaolong WAN (USTC)

StudentsPostdocsAsst. Profs.

Page 3: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

3

Overarching Science Challenges for the coming

decade: 2013-2022 Discover the meaning of confinement Determine its connection with DCSB

(dynamical chiral symmetry breaking) Elucidate their signals in observables

… so experiment and theory together can map the nonperturbative behaviour of the strong interaction

In my view, it is unlikely that two phenomena, so critical in the Standard Model and tied to the dynamical generation of a single mass-scale, can have different origins and fates.

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Page 4: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

4

Immediate Science Challenges for the coming decade: 2013-

2022 Exploit opportunities provided by new data on hadron elastic and transition form factors– Chart infrared evolution of QCD’s coupling and dressed-masses – Reveal correlations that are key to baryon structure– Expose facts & fallacies in modern descriptions of hadron structure

Precision experimental study of (far) valence region, and theoretical computation of distribution functions and distribution amplitudes– Computation is critical– Without it, no amount of data will reveal anything about the theory

underlying the phenomena of strong interaction physics

MENU 2013: 30/09-04/10

Page 5: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

5

What is QCD?MENU 2013: 30/09-04/10

Page 6: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

6

Very likely a self-contained, nonperturbatively renormalisable and hence well defined Quantum Field TheoryThis is not true of QED – cannot be defined nonperturbatively

No confirmed breakdown over an enormous energy domain: 0 GeV < E < 8 TeV

Increasingly likely that any extension of the Standard Model will be based on the paradigm established by QCD – Extended Technicolour: electroweak symmetry breaks via a

fermion bilinear operator in a strongly-interacting non-Abelian theory. (Andersen et al. “Discovering Technicolor” Eur.Phys.J.Plus 126 (2011) 81)Higgs sector of the SM becomes an effective description of a more fundamental fermionic theory, similar to the Ginzburg-Landau theory of superconductivity

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

(not an effective theory)QCD is a Theory

Page 7: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

7

What is Confinement?

MENU 2013: 30/09-04/10

Page 8: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

8

Light quarks & Confinement

A unit area placed midway between the quarks and perpendicular to the line connecting them intercepts a constant number of field lines, independent of the distance between the quarks. This leads to a constant force between the quarks – and a large force at that, equal to about 16 metric tons.”

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Folklore … Hall-D Conceptual Design Report(5) “The color field lines between a quark and an anti-quark form flux tubes.

Page 9: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

9

Light quarks & Confinement

Problem: 16 tonnes of force makes a lot of pions.

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Page 10: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

10

Light quarks & Confinement

Problem: 16 tonnes of force makes a lot of pions.

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Page 11: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

11

Light quarks & Confinement In the presence of

light quarks, pair creation seems to occur non-localized and instantaneously

No flux tube in a theory with light-quarks.

Flux-tube is not the correct paradigm for confinement in hadron physics

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

G. Bali et al., PoS LAT2005 (2006) 308

Page 12: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

12

Confinement QFT Paradigm: – Confinement is expressed through a dramatic

change in the analytic structure of propagators for coloured states

– It can almost be read from a plot of the dressed-propagator for a coloured state

MENU 2013: 30/09-04/10

complex-P2 complex-P2

o Real-axis mass-pole splits, moving into pair(s) of complex conjugate singularities, (or other qualitatively analogous structures chracterised by a dynamically generated mass-scale)o State described by rapidly damped wave & hence state cannot exist in observable spectrum

Normal particle Confined particle

timelike axis: P2<0

s ≈ 1/Im(m) ≈ 1/2ΛQCD ≈ ½fm

Page 13: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

13

Dynamical Chiral Symmetry Breaking

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Page 14: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

14

Dynamical Chiral Symmetry BreakingDCSB is a fact in QCD

– Dynamical, not spontaneous• Add nothing to QCD , no Higgs field, nothing! • Effect achieved purely through the quark+gluon dynamics.

– It’s the most important mass generating mechanism for visible matter in the Universe. • Responsible for ≈98% of the proton’s mass.• Higgs mechanism is (almost) irrelevant to light-quarks.

– Just like gluons and quarks, and for the same reasons, condensates are confined within hadrons. • There are no vacuum condensates.

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)Confinement contains condensates, S.J. Brodsky, C.D. Roberts, R. Shrock and P.C. Tandy, arXiv:1202.2376 [nucl-th], Phys. Rev. C85 (2012) 065202

Page 15: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

DCSB

MENU 2013: 30/09-04/10 15

Mass from nothing!

C.D. Roberts, Prog. Part. Nucl. Phys. 61 (2008) 50M. Bhagwat & P.C. Tandy, AIP Conf.Proc. 842 (2006) 225-227 In QCD, all “constants” of

quantum mechanics are actually strongly momentum dependent: couplings, number density, mass, etc.

So, a quark’s mass depends on its momentum.

Mass function can be calculated and is depicted here.

Continuum- and Lattice-QCD are in agreement: the vast bulk of the light-quark mass comes from a cloud of gluons, dragged along by the quark as it propagates.

Page 16: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

16

Parton structure of

hadronsMENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Valence quarks

Page 17: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

17

Parton Structure of Hadrons

Valence-quark structure of hadrons– Definitive of a hadron.

After all, it’s how we distinguish a proton from a neutron– Expresses charge; flavour; baryon number; and other

Poincaré-invariant macroscopic quantum numbers– Via evolution, determines background at LHC

Sea-quark distributions– Flavour content, asymmetry, intrinsic: yes or no?

Answers are essentially nonperturbative features of QCD

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Page 18: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

18

Parton Structure of Hadrons

Need for calculation is emphasised by Saga of pion’s valence-quark distribution:o 1989: uv

π ~ (1-x)1 – inferred from LO-Drell-Yan & disagrees with QCD;

o 2001: DSE- QCD predictsuv

π ~ (1-x)2 argues that distribution inferred from data can’t be correct;

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Valence quark distributions in the pion, M.B. Hecht, Craig D. Roberts, S.M. Schmidt, nucl-th/0008049, Phys.Rev. C63 (2001) 025213 .

Page 19: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

19

Parton Structure of Hadrons

Need for calculation is emphasised by Saga of pion’s valence-quark distribution:o 1989: uv

π ~ (1-x)1 – inferred from LO-Drell-Yan & disagrees with QCD;

o 2001: DSE- QCD predicts uv

π ~ (1-x)2 argues that distribution inferred from data can’t be correct;

o 2010: NLO reanalysis including soft-gluon resummation, inferred distribution agrees with DSE and QCD

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Soft-gluon resummation and the valence parton distribution function of the pion, M. Aicher, A. Schafer, W. Vogelsang, Phys.Rev.Lett. 105 (2010) 252003, arXiv:1009.2481 [hep-ph]

Valence quark distributions in the pion, M.B. Hecht, Craig D. Roberts, S.M. Schmidt, nucl-th/0008049, Phys.Rev. C63 (2001) 025213 .

Page 20: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

20

Pion’s valence-quark Distribution Amplitude

Same methods can be used to compute φπ(x) = projection of the pion’s Poincaré-covariant wave-function onto the light-front

Results have been obtained with rainbow-ladder DSE kernel, simplest symmetry preserving form; and the best DCSB-improved kernel that is currently available.

xα (1-x)α, with α=0.3

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Imaging dynamical chiral symmetry breaking: pion wave function on the light front, Lei Chang, et al., arXiv:1301.0324 [nucl-th], Phys. Rev. Lett. 110 (2013) 132001 (2013) [5 pages].

Page 21: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

21

Pion’s valence-quark Distribution Amplitude

Both kernels agree: marked broadening of φπ(x), which owes to DCSB

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Asymptotic

RL

DB

This may be claimed because PDA is computed at a low renormalisation scale in the chiral limit, whereat the quark mass function owes entirely to DCSB.

Difference between RL and DB results is readily understood: B(p2) is more slowly varying with DB kernel and hence a more balanced result

Imaging dynamical chiral symmetry breaking: pion wave function on the light front, Lei Chang, et al., arXiv:1301.0324 [nucl-th], Phys. Rev. Lett. 110 (2013) 132001 (2013) [5 pages].

Page 22: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

22

Pion’s valence-quark Distribution Amplitude

Both kernels agree: marked broadening of φπ(x), which owes to DCSB

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Asymptotic

RL

DB

This may be claimed because PDA is computed at a low renormalisation scale in the chiral limit, whereat the quark mass function owes entirely to DCSB.

Difference between RL and DB results is readily understood: B(p2) is more slowly varying with DB kernel and hence a more balanced result

These computations are the first to directly expose DCSB – pointwise – on the light-front; i.e., in the infinite momentum frame.

Imaging dynamical chiral symmetry breaking: pion wave function on the light front, Lei Chang, et al., arXiv:1301.0324 [nucl-th], Phys. Rev. Lett. 110 (2013) 132001 (2013) [5 pages].

Page 23: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

23

Pion’s valence-quark Distribution Amplitude

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Established a one-to-one connection between DCSB and the pointwise form of the pion’s wave function.

Dilation measures the rate at which dressed-quark approaches the asymptotic bare-parton limit

Experiments at JLab12 can empirically verify the behaviour of M(p), and hence chart the IR limit of QCD

C.D. Roberts, Prog. Part. Nucl. Phys. 61 (2008) 50

Dilation of pion’s wave function is measurable in

pion’s electromagnetic form factor at JLab12

A-rated: E12-06-10

Imaging dynamical chiral symmetry breaking: pion wave function on the light front, Lei Chang, et al., arXiv:1301.0324 [nucl-th], Phys. Rev. Lett. 110 (2013) 132001 (2013) [5 pages].

Page 24: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

24

When is asymptotic PDA valid?

PDA is a wave function not directly observable

but PDF is. φπ

asy(x) can only be a good approximation to the pion's PDA when it is accurate to write

uvπ (x) ≈ δ(x)

for the pion's valence-quark distribution function.

This is far from valid at currently accessible scales

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Q2=27 GeV2

This is not δ(x)!

Explanation and Prediction of Observables using Continuum Strong QCD, I.C. Cloët & C.D. Roberts

Page 25: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

25

When is asymptotic PDA valid? When is asymptopia reached?

If uvπ(x) ≈ δ(x), then

<x> = ∫01 dx x uv

π(x) = 0;

i.e., the light-front momentum fraction carried by valence-quarks is ZERO Asymptopia is reached when <x> is “small”

As usual, the computed valence-quark distribution produces (π = u+dbar)

2<x>2GeV = 44% When is <x> small?

MENU 2013: 30/09-04/10

Explanation and Prediction of Observables using Continuum Strong QCD, I.C. Cloët & C.D. Roberts

NLO evolution of PDF, computation of <x>. Even at LHC energies, light-front fraction of

the π momentum:<x>dressed valence-quarks = 25%

<x>glue = 54%, <x>sea-quarks = 21%

LHC: 16TeV

Evolution in QCD is LOGARITHMIC

JLab 2GeV

Page 26: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

26

When is asymptotic PDA valid? When is asymptopia reached?

If uvπ(x) ≈ δ(x), then

<x> = ∫01 dx x uv

π(x) = 0;

i.e., the light-front momentum fraction carried by valence-quarks is ZERO Asymptopia is reached when <x> is “small”

As usual, the computed valence-quark distribution produces (π = u+dbar)

2<x>2GeV = 44% When is <x> small?

MENU 2013: 30/09-04/10

Explanation and Prediction of Observables using Continuum Strong QCD, I.C. Cloët & C.D. Roberts

NLO evolution of PDF, computation of <x>. Even at LHC energies, light-front fraction of

the π momentum:<x>dressed valence-quarks = 25%

<x>glue = 54%, <x>sea-quarks = 21%

LHC: 16TeV

Evolution in QCD is LOGARITHMIC

JLab 2GeV

Even at LHC energy scales, nonperturbative effects, such as DCSB, are playing a crucial role in setting the scales in PDAs and PDFs.

Page 27: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

27

Charged pion elastic form factor

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Single interaction kernel, determined by just 1 parameter and preserving the one-loop RG-behaviour of QCD, had unified Fπ(Q2) and φπ(x) (and many other quantities)

New Algorithm

Pion electromagnetic form factor at spacelike momenta, Lei Chang et al. arXiv:1307.0026 [nucl-th], Phys. Rev. Lett. in press

DSE 2013

pQCD obtained with φπasy(x)

pQCD obtained with φπ(x;2GeV), i.e., the PDA appropriate to the scale of the experiment

15%DSE 2000

Page 28: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

28

Charged pion elastic form factor

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Single interaction kernel, determined by just 1 parameter and preserving the one-loop RG-behaviour of QCD, has unified Fπ(Q2) and φπ(x) (and many other quantities)

Prediction of pQCD obtained when the pion valence-quark PDA has the form appropriate to the scale accessible in modern experiments is markedly different from the result obtained using the asymptotic PDA

Pion electromagnetic form factor at spacelike momenta, Lei Chang et al. arXiv:1307.0026 [nucl-th], Phys. Rev. Lett. in press

DSE 2013

pQCD obtained with φπasy(x)

pQCD obtained with φπ(x;2GeV), i.e., the PDA appropriate to the scale of the experiment

15%

Near agreement between the pertinent perturbative QCD prediction and DSE-2013 prediction is striking.

Dominance of hard contributions to the pion form factor for Q2>8GeV2. Normalisation is fixed by a pion wave-function whose dilation with respect to φπ

asy(x) is a definitive signature of DCSB

Page 29: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

Baryon Structure Dynamical chiral symmetry breaking (DCSB)

– has enormous impact on meson properties. Must be included in description

and prediction of baryon properties. DCSB is essentially a quantum field theoretical effect.

In quantum field theory Meson appears as pole in four-point quark-antiquark Green function

→ Bethe-Salpeter Equation Nucleon appears as a pole in a six-point quark Green function

→ Faddeev Equation. Poincaré covariant Faddeev equation sums all possible exchanges and

interactions that can take place between three dressed-quarks Tractable equation is based on the observation that an interaction

which describes colour-singlet mesons also generates nonpointlike quark-quark (diquark) correlations in the colour-antitriplet channel

MENU 2013: 30/09-04/10 29

R.T. Cahill et al.,Austral. J. Phys. 42 (1989) 129-145

6333 SUc(3):

Page 30: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

30

Baryon Structure

Remarks Diquark correlations are not inserted by hand

Such correlations are a dynamical consequence of strong-coupling in QCD

The same mechanism that produces an almost massless pion from two dynamically-massive quarks; i.e., DCSB, forces a strong correlation between two quarks in colour-antitriplet channels within a baryon – an indirect consequence of Pauli-Gürsey symmetry

Diquark correlations are not pointlike– Typically, r0+ ~ rπ & r1+ ~ rρ

(actually 10% larger)– They have soft form factors

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

SU(2) isospin symmetry of hadrons might emerge from mixing half-integer spin particles with their antiparticles.

Faddeev Equation

Page 31: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

31

Structure of Hadrons Elastic form factors

– Provide vital information about the structure and composition of the most basic elements of nuclear physics.

– They are a measurable and physical manifestation of the nature of the hadrons' constituents and the dynamics that binds them together.

Accurate form factor data are driving paradigmatic shifts in our pictures of hadrons and their structure; e.g., – role of orbital angular momentum and nonpointlike diquark

correlations– scale at which p-QCD effects become evident– strangeness content– meson-cloud effects– etc.

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Page 32: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

32

Flavor separation of proton form factors

Very different behavior for u & d quarks Means apparent scaling in proton F2/F1 is purely accidental

MENU 2013: 30/09-04/10

Cates, de Jager, Riordan, Wojtsekhowski, PRL 106 (2011) 252003

Q4F2q/k

Q4 F1q

Page 33: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

33

Diquark correlations!

Poincaré covariant Faddeev equation – Predicts scalar and axial-vector

diquarks Proton's singly-represented d-quark

more likely to be struck in association with 1+ diquark than with 0+

– form factor contributions involving 1+ diquark are softer

MENU 2013: 30/09-04/10

Cloët, Eichmann, El-Bennich, Klähn, Roberts, Few Body Syst. 46 (2009) pp.1-36Wilson, Cloët, Chang, Roberts, PRC 85 (2012) 045205

Doubly-represented u-quark is predominantly linked with harder 0+ diquark contributions

Interference produces zero in Dirac form factor of d-quark in proton– Location of the zero depends on the relative probability of finding

1+ & 0+ diquarks in proton– Correlated, e.g., with valence d/u ratio at x=1

d

u

=Q2/M2

Page 34: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

Visible Impacts of DCSB

MENU 2013: 30/09-04/10 34

Apparently small changes in M(p) within the domain 1<p(GeV)<3have striking effect on the proton’s electric form factor

The possible existence and location of the zero is determined by behaviour of Q2F2

p(Q2) Like the pion’s PDA, Q2F2

p(Q2) measures the rate at which dressed-quarks become parton-like: F2

p=0 for bare quark-partons Therefore, GE

p can’t be zero on the bare-parton domain

I.C. Cloët, C.D. Roberts, A.W. Thomas: Revealing dressed-quarks via the proton's charge distribution, arXiv:1304.0855 [nucl-th], Phys. Rev. Lett. 111 (2013) 101803

Page 35: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

Visible Impacts of DCSB

MENU 2013: 30/09-04/10 35

Follows that the possible existence and location

of a zero in the ratio of proton elastic form factors

[μpGEp(Q2)/GMp(Q2)] are a direct measure of the nature of the quark-quark interaction in the Standard Model.

Leads to Prediction neutron:protonGEn(Q2) > GEp(Q2) at Q2 > 4GeV2

I.C. Cloët, C.D. Roberts, A.W. Thomas: Revealing dressed-quarks via the proton's charge distribution, arXiv:1304.0855 [nucl-th], Phys. Rev. Lett. 111 (2013) 101803

Page 36: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

36

Far valence domain x≃1

MENU 2013: 30/09-04/10

Page 37: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

37

Far valence domain x≃1

Endpoint of the far valence domain: x 1, is especially significant≃– All familiar PDFs vanish at x=1; but ratios of any two need not– Under DGLAP evolution, the value of such a ratio is invariant.

Thus, e.g., – limx→1 dv(x)/uv(x)

is unambiguous, scale invariant, nonperturbative feature of QCD. keen discriminator between frameworks that claim to explain nucleon structure.

Furthermore, Bjorken-x=1 corresponds strictly to the situation in which the invariant mass of the hadronic final state is precisely that of the target; viz., elastic scattering. Structure functions inferred experimentally on x 1 ≃

are determined theoretically by target's elastic form factors.

MENU 2013: 30/09-04/10

Nucleon spin structure at very high-xCraig D. Roberts, Roy J. Holt and Sebastian M. SchmidtarXiv:1308.1236 [nucl-th], Phys. Lett. B in press

Page 38: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

38

Neutron Structure Function at high-x

Valence-quark distributions at x=1– Fixed point under DGLAP evolution– Strong discriminator between theories

Algebraic formula

– P1p,s = contribution to the proton's charge arising from diagrams

with a scalar diquark component in both the initial and final state

– P1p,a = kindred axial-vector diquark contribution

– P1p,m = contribution to the proton's charge arising from diagrams

with a different diquark component in the initial and final state.

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

I.C. Cloët, C.D. Roberts, et al.arXiv:0812.0416 [nucl-th], Few Body Syst. 46 (2009) 1-36D. J. Wilson, I. C. Cloët, L. Chang and C. D. RobertsarXiv:1112.2212 [nucl-th], Phys. Rev. C85 (2012) 025205 [21 pages]

Measures relative strength of axial-vector/scalar diquarks in proton

Page 39: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

39

Neutron StructureFunction at high-x

MENU 2013: 30/09-04/10

d/u=1/2

SU(6) symmetry

pQCD, uncorrelated Ψ

0+ qq only, d/u=0

Deep inelastic scattering – the Nobel-prize winning quark-discovery experiments

Reviews: S. Brodsky et al.

NP B441 (1995) W. Melnitchouk & A.W.Thomas

PL B377 (1996) 11 N. Isgur, PRD 59 (1999) R.J. Holt & C.D. Roberts

RMP (2010)

d/u=0.28

DSE: “realistic”

Distribution of neutron’s momentum amongst quarks on the valence-quark domain

DSE: “contact”d/u=0.18

Melnitchouk, Accardi et al. Phys.Rev. D84 (2011) 117501

x>0.9

Melnitchouk, Arrington et al. Phys.Rev.Lett. 108 (2012) 252001

I.C. Cloët, C.D. Roberts, et al.arXiv:0812.0416 [nucl-th], Few Body Syst. 46 (2009) 1-36D. J. Wilson, I. C. Cloët, L. Chang and C. D. RobertsarXiv:1112.2212 [nucl-th], Phys. Rev. C85 (2012) 025205 [21 pages]

Page 40: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

40

Neutron StructureFunction at high-x

MENU 2013: 30/09-04/10

d/u=1/2

SU(6) symmetry

pQCD, uncorrelated Ψ

0+ qq only, d/u=0

Deep inelastic scattering – the Nobel-prize winning quark-discovery experiments

Reviews: S. Brodsky et al.

NP B441 (1995) W. Melnitchouk & A.W.Thomas

PL B377 (1996) 11 N. Isgur, PRD 59 (1999) R.J. Holt & C.D. Roberts

RMP (2010)

d/u=0.28

DSE: “realistic”

Distribution of neutron’s momentum amongst quarks on the valence-quark domain

DSE: “contact”d/u=0.18

Melnitchouk, Accardi et al. Phys.Rev. D84 (2011) 117501

x>0.9

Melnitchouk, Arrington et al. Phys.Rev.Lett. 108 (2012) 252001

I.C. Cloët, C.D. Roberts, et al.arXiv:0812.0416 [nucl-th], Few Body Syst. 46 (2009) 1-36D. J. Wilson, I. C. Cloët, L. Chang and C. D. RobertsarXiv:1112.2212 [nucl-th], Phys. Rev. C85 (2012) 025205 [21 pages]

NB. d/u|x=1= 0 means there are

no valence d-quarks in the proton!

JLab12 can solve this enigma

Page 41: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

41

Neutron StructureFunction at high-x

“While it is quite hazardous to extrapolate from our limited xB range all the way to xB = 1, these results appear to disfavor models of the proton with d/u=0 at xB = 1”

MENU 2013: 30/09-04/10

Short Range Correlations and the EMC Effect, L.B. Weinstein et al., Phys.Rev.Lett. 106 (2011) 052301, arXiv:1009.5666 [hep-ph]

Figure courtesy of D.W. Higinbotham

Observation: EMC effect measured in electron DIS at 0.35 < xB < 0.7, is linearly related to the Short Range Correlation (SRC) scale factor obtained from electron inclusive scattering at xB > 1.

Page 42: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

42

Nucleon spin structure at very high x

MENU 2013: 30/09-04/10

Similar formulae for nucleon longitudinal structure functions.

Plainly, existing data cannot distinguish between modern pictures of nucleon structure

Empirical results for nucleon longitudinal spin asymmetries on x ≃ 1 promise to add greatly to our capacity for discriminating between contemporary pictures of nucleon structure.

NB. pQCD is actually model-dependent: assumes SU(6) spin-flavour wave function for the proton's valence-quarks and the corollary that a hard photon may interact only with a quark that possesses the same helicity as the target.

Nucleon spin structure at very high-xCraig D. Roberts, Roy J. Holt and Sebastian M. SchmidtarXiv:1308.1236 [nucl-th], Phys. Lett. B in press

Page 43: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

43

EpilogueMENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Page 44: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

44

Epilogue The Physics of Hadrons is Unique:– Confronting a fundamental theory in which the

elementary degrees-of-freedom are intangible and only composites reach detectors

Confinement in real-world is NOT understood But DCSB is understood, and is crucial to any

understanding of hadron phenomena

They must have a common origin Experimental and theoretical study of the Bound-

state problem in continuum QCD promises to provide many more

predictions, insights and answers.MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Page 45: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

45

This is not the end

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Page 46: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

46

Lattice comparisonPion’s valence-quark PDA

Employ the generalised-Gegenbauer method described previously (and in Phys. Rev. Lett. 110 (2013) 132001 (2013) [5 pages]).

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Lattice-QCD => one nontrivial moment:

<(2x-1)2> = 0.27 ± 0.04 Legend

• Solid = DB (Best) DSE• Dashed = RL DSE• Dotted (black) = 6 x (1-x)• Dot-dashed = midpoint

lattice; and the yellow shading exhibits band allowed by lattice errors

φπ~ xα (1-x)α

α=0.35+0.32 = 0.67- 0.24 = 0.11

DB α=0.31 but 10% a2<0RL α=0.29 and 0% a2

V. Braun et al., PRD 74 (2006) 074501

Pion distribution amplitude from lattice-QCD, I.C. Cloët et al. arXiv:1306.2645 [nucl-th]

Page 47: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

47

When is asymptotic PDA valid?

Under leading-order evolution, the PDA remains broad to Q2>100 GeV2

Feature signals persistence of the influence of dynamical chiral symmetry breaking.

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Consequently, the asymptotic distribution, φπ

asy(x), is a poor approximation to the pion's PDA at all such scales that are either currently accessible or foreseeable in experiments on pion elastic and transition form factors.

Thus, related expectations based on φπasy(x) should be revised.

asymptotic

4 GeV2

100 GeV2

Pion distribution amplitude from lattice-QCD, I.C. Cloët et al. arXiv:1306.2645 [nucl-th], Phys. Rev. Lett. 111 (2013) 092001 [5 pages]

Page 48: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

48

Flavor separation of proton form factors

Visible Impacts of DCSB

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Effect driven primarily by electric form factor of doubly-represented u-quark

u-quark is 4-times more likely than d-quark to be involved in hard interaction

So … GEpu ≈ GEp

Singly-represented d-quark is usually sequestered inside a soft diquark correlation

So, although it also becomes parton-like more quickly as α increases, that is hidden from view

d-quark

u-quark

I.C. Cloët & C.D. Roberts … continuing

Page 49: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

49

Confinement contains

condensatesMENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Page 50: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

50

“Orthodox Vacuum”

Vacuum = “frothing sea” Hadrons = bubbles in that “sea”,

containing nothing but quarks & gluonsinteracting perturbatively, unless they’re near the bubble’s boundary, whereat they feel they’re trapped!

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

u

u

ud

u ud

du

Page 51: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

51

New Paradigm

Vacuum = hadronic fluctuations but no condensates

Hadrons = complex, interacting systemswithin which perturbative behaviour is restricted to just 2% of the interior

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

u

u

ud

u ud

du

Page 52: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

52

Regge Trajectories? Martinus Veltmann, “Facts and Mysteries in Elementary Particle Physics” (World Scientific,

Singapore, 2003): In time the Regge trajectories thus became the cradle of string theory. Nowadays the Regge trajectories have largely disappeared, not in the least because these higher spin bound states are hard to find experimentally. At the peak of the Regge fashion (around 1970) theoretical physics produced many papers containing families of Regge trajectories, with the various (hypothetically straight) lines based on one or two points only!

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)

Phys.Rev. D 62 (2000) 016006 [9 pages]

1993: "for elucidating the quantum structure of electroweak interactions in physics"

Systematics of radial and angular-momentum Regge trajectories of light non-strange qqbar-states“ P. Masjuan, E. Ruiz Arriola, W. Broniowski. arXiv:1305.3493 [hep-ph]

Page 53: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

53

Hybrid Hadrons & Lattice QCD – Robert Edwards, Baryons13

Heavy pions … so, naturally, constituent-quark like spectra To which potential does it correspond?

MENU 2013: 30/09-04/10

arXiv:1104.5152, 1201.2349

Page 54: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

54

Hybrid meson models – Robert Edwards, Baryons13

With minimal quark content, , gluonic field can in a color singlet or octet

`constituent’ gluonin S-wave

`constituent’ gluonin P-wave

bag model

flux-tube model

arXiv:1104.5152, 1201.2349

MENU 2013: 30/09-04/10

Page 55: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

Craig Roberts: Images of the Origin of Mass (44p)

55

Hybrid baryon models – Robert Edwards, Baryons13

Minimal quark content, , gluonic field can be in color singlet, octet or decuplet

bag model

flux-tube model

Now must take into account permutation symmetry of quarks and gluonic field

arXiv:1104.5152, 1201.2349

MENU 2013: 30/09-04/10

Page 56: Craig Roberts Physics Division. 1.Rocio BERMUDEZ (U Michoácan); 2.Xiomara GUTIERREZ-GUERRERO (U Michoácan); 3.S. HERNÁNDEZ (U Michoácan); 4.Trang NGUYEN.

56

Table of ContentsI. IntroductionII. Pion valence-quark distributionIII. Pion valence-quark parton distribution amplitudeIV. When is the asymptotic PDA a good approximation?V. Charged pion elastic form factorVI. Nucleon form factorsVII. Nucleon structure functions at large-xVIII. Epilogue

A. DSE cf. Lattice PDA & PDA evolutionB. GE/GM flavour separationC. Confinement contains condensatesD. Regge Trajectories?

MENU 2013: 30/09-04/10

Craig Roberts: Images of the Origin of Mass (44p)