centrales

18
UNIVERSIDAD DE CUENCA FACULTAD DE INGENIERÍA ESCUELA DE ELCTRICA “CENTRALES ELECTRICAS” TRABAJO REALIZADO POR: DANNY FERNANDO CORDOVA ERRAEZ DECIMO CICLO – INGENIERÍA ELÉCTRICA 2014-2015 CENTRALES ELECTRICAS 1

Transcript of centrales

Page 1: centrales

UNIVERSIDAD DE CUENCA

FACULTAD DE INGENIERÍA

ESCUELA DE ELCTRICA

“CENTRALES ELECTRICAS”

TRABAJO REALIZADO POR:

DANNY FERNANDO CORDOVA ERRAEZ

DECIMO CICLO – INGENIERÍA ELÉCTRICA

2014-2015

CENTRALES ELECTRICAS 1

Page 2: centrales

UNIVERSIDAD DE CUENCA

INDICE

TEMA 1

1. La Demanda …………………………………………………………………………………………………………………………..21.1 Proyección de la Demanda……………………………………………………………………………………………………..21.2 Curvas de Carga Diaria………………………………………........................................................................41.3 Curvas de Duración de Carga ………………………………………………………………………………………………….51.4 Curvas de Carga Anual………………………………………………………….....................................................51.5 Duración de Curvas de Carga Anual…………………………………………………………………………………………51.6 Despacho Económico………………………………………………………………………………………………………………5

TEMA 2

2. Programación de operación…………………………………………………………………………………………………….62.1 Programación de largo plazo…………………………………………………………………………………………………..62.2 Programación de Mediano Plazo…………………………………………………………………………………………….62.3 Programación de Corto Plazo………………………………………………………………………………………………….62.4 Selección de Unidades…………………………………………………………………………………………………………….72.5 Despacho Económico………………………………………………………………………………………………………………7

TEMA 3

1. La Generación Eléctrica……………………………………………………………………………………….………………….82. 3.1 Diferencias Entre Tipos de Generación……………………………………………………………………………..83. 3.2 Diferencias de tener un generador de un tipo u otro………………………………………………………12

BIBLIOGRAFIA……………………………………………………………………………………………………………………………….13

CENTRALES ELECTRICAS 2

Page 3: centrales

UNIVERSIDAD DE CUENCA

TEMA 1

1. La Demanda

La demanda eléctrica es una medida de la tasa promedio del consumo eléctrico de las instalaciones eléctricas. La demanda en un SEP varía constantemente.

Consumo es la cantidad de energía que se utiliza durante un período de tiempo determinado y se mide en kilovatio-hora (Kwh.).

La variación de la demanda en el tiempo para una carga dada origina el ciclo de carga que es una curva de carga (demanda vs tiempo)

1.1 Proyección de la demanda

Para poder proyectar el comportamiento de la demanda eléctrica necesitamos datos estadísticos del sector correspondiente a la evolución del número de clientes y consumo su consumo en potencia y energía por nivel de voltaje.

De igual forma, datos estadísticas de las variables explicativas al comportamiento de la evolución de la demanda, como es el caso de la información demográfica.

Otra variable explicativa al comportamiento de la evolución de la demanda, corresponde a la información macroeconómica.

MÉTODOS DE ESTIMACIÓN APLICADOS EN CADA GRUPO DE CONSUMO

CENTRALES ELECTRICAS 3

Page 4: centrales

UNIVERSIDAD DE CUENCAA partir de la correlación existente entre las variables macroeconómicas y demográficas, y las variables de interés (energía y clientes), junto con la aplicación de los métodos analíticos, es posible la determinación de la evolución esperada de las variables bajo análisis.

ESQUEMA ANALÍTICO DE BALANCE DE ENERGÍA Y POTENCIA

Análisis plan maestro de electrificación período 2013 - 2022

EVOLUCIÓN HISTÓRICA Y PROYECCIÓN DE CLIENTES TOTALES Y POR GRUPO DE

CONSUMO DEL ECUADOR

CENTRALES ELECTRICAS 4

Page 5: centrales

UNIVERSIDAD DE CUENCA

EVOLUCIÓN DE LA DEMANDA DE ENERGÍA EN BORNES DE GENERACIÓN

1.2 Curvas de Carga Diaria

Las curvas de carga diaria están formadas por los picos obtenidos en intervalos de una hora para cada hora del día.

La curvas de carga diaria dan una indicación de las características de la carga en el sistema, sean estas predominantemente residenciales, comerciales e industriales y de la forma en la que estas se combinan para producir el pico.

Su análisis debe conducir a conclusiones similares a las curvas de carga anual, pero proporcionan mayores detalles sobre la forma en la que se han venido variando durante el periodo histórico y constituyen una base para determinar las tendencias predominantes de las cargas del sistema, permiten seleccionar en forma adecuada los quipos de transformación en lo que se refiere a la capacidad límite de sobrecarga, tipo de enfriamiento para los transformadores de subestaciones y límites de sobrecarga para los trasformadores de distribución.

CENTRALES ELECTRICAS 5

Page 6: centrales

UNIVERSIDAD DE CUENCA1.3 Curvas de Duración de Carga (CDC)

Estas curvas se derivan de las anteriores y su análisis debe conducir a condiciones idénticas a las obtenidas con las curvas de carga diaria.

La curva de duración de carga diaria se puede ajustar de tal manera que se aproxime a una curva exponencial decreciente de forma:

CDC (t )=C+Ae−Bt

1.4 Curvas de Carga Anual

Estas curvas se deben dibujar en lo posible para el número de años del periodo estadístico de interés (2, 3, 4 años).

Las curvas de carga anual están formadas por los valores de la demanda máxima de cada mes, permiten una visualización de los crecimientos y variaciones de los picos mensuales y anuales.

El análisis de las causas de estas variaciones debe conducir a conclusiones prácticas sobre el comportamiento del sistema y factores que lo afectan.

1.5 Curvas de Duración de Carga Anual

Estas curvas se dibujan para el periodo estadístico de interés y se derivan de la anterior e indican la distribución de las cargas pico durante el año, así como la duración de las condiciones del pico.

En conclusión la duración de carga es la relación de la demanda y la duración de las demandas sobre un periodo especificado del tiempo. Las demandas horarias pueden ser tabuladas en orden descendente.

1.6 Despacho económico

El despacho económico es calcular el perfil óptimo de la generación de electricidad considerando varias potencias térmicas disponibles para satisfacer un consumo determinado.

Su objetivo es minimizar el costo total de la producción.

Cada unidad tiene límites técnicos de operación y caracteriza el punto de vista económico, por una función de costos.

Es necesario para adaptarse a un consumo particular, conocida durante un período de tiempo dado.

La solución del problema implica el conocimiento técnico, económico y matemática (optimización con restricciones).

CENTRALES ELECTRICAS 6

Page 7: centrales

UNIVERSIDAD DE CUENCA

TEMA 2

2. Programación de la Operación

La Programación de la Operación de los Sistemas Eléctricos de Potencia es un problema de optimización cuyo objetivo es determinar el programa de generación que minimice los costos de operación en forma integrada para un período definido.

2.1 Programación de Largo Plazo

El objetivo de este primer eslabón de la cadena es determinar el modo de operación del grupo generador, térmico e hidráulico, de tal forma que el costo dentro del período considerado sea mínimo.

Las principales variables de estado consideradas en el problema de optimización son: la demanda, la evolución plurianual de los embalses, la probabilidad de energía no suministrada, la falla de equipos de generación y el valor esperado de la generación térmica, todas ellas son de carácter aleatorio. El horizonte de decisión de este sub-problema es típicamente de 2 a 5 años, discretizado en pasos mensuales.

2.2 Programación de Mediano Plazo

Utilizando como marco de referencia los resultados de la Programación de Largo Plazo se procede a desagregar del total de la generación hidráulica, calculada para los embalses equivalentes, la correspondiente a cada una de las plantas hidroeléctricas del sistema. El nivel de detalle con que se modela el sistema es mayor que en la Programación de Largo Plazo y la particularidad estocástica de la variable hidráulica desaparece al considerarla determinística. La Programación de Mediano Plazo tiene un horizonte de estudio, normalmente, de uno a dos años de forma discreta en pasos mensuales o semanales.

2.3 Programación de Corto Plazo

En la programación de corto plazo se descomponen los resultados semanales obtenidos del eslabón anterior en pasos diarios considerando los efectos del control de los embalses como los retardos de agua entre los embalses, el control de inundaciones y el uso del agua para fines no energéticos.

El objetivo de Esta programación es determinar la potencia horaria de generación de cada unidad tanto térmica como hidráulica sujeto a las restricciones técnicas y de operación. El horizonte de análisis varía entre un día y dos semanas, siendo elaborado de forma discreta en períodos de una

CENTRALES ELECTRICAS 7

Page 8: centrales

UNIVERSIDAD DE CUENCAhora. Por esta razón la programación de corto plazo se subdivide en la programación semanal y la programación diaria.

2.4 Selección de Unidades

La selección de unidades o unit commitment (UC), se refiere a la selección estratégica que se realiza para determinar cuáles de las centrales eléctricas disponibles se deben considerar para proveer electricidad. El UC realiza la selección óptima de unidades en un sistema de plantas en función de sus costos de arranque (start-up) y costos operacionales. A través de restricciones se modela una amplia variedad de parámetros relacionados con aspectos tecnológicos tales como: tiempo mínimo de la operación (maximum up time), tiempo mínimo fuera de la operación (minimum up time), tiempo máximo de operación, etc.

La formulación matemática y resolución de la selección de unidades es un problema complejo debido a que se trata de un problema combinatorial con alta dimensionalidad del espacio de solución.

Estas características hacen que exista un número exponencial de soluciones factibles y su método de solución es mediante programación entero-mixta. La función objetivo de este proceso de optimización es minimizar el costo total del sistema que considera el costo variable de operación más el costo de arranque y con esto determinar cuáles unidades deben abastecer la demanda en cada instante del período considerado, a la vez que satisface varias restricciones, las cuales pueden ser clasificadas en las siguientes categorías:

Restricciones Globales. Restricciones de Reserva. Restricciones Individuales. Restricciones de Combustible. Restricciones Ambientales. Restricciones del Sistema Hidráulico.

2.5 Despacho Económico

Una vez definida la selección de unidades, se realiza la modelación de la red de transmisión del sistema de potencia y se procede a ejecutar el Despacho Económico, éste distribuye la potencia efectiva entre las máquinas que fueron comprometidas en el UC para cubrir la carga y pérdidas del sistema. La función objetivo, de esta optimización, es minimizar los costos de operación de las unidades que deben abastecer la demanda en cada instante del período considerado.

CENTRALES ELECTRICAS 8

Page 9: centrales

UNIVERSIDAD DE CUENCA

Las principales restricciones del problema son:

Balance de Potencia Activa y Reactiva. Límites de Generación de Potencia (activa y reactiva). Límites de Voltajes de Nodo.

TEMA 3

3. La Generación Eléctrica

En general, la generación de energía eléctrica consiste en transformar alguna clase de energía (química, cinética, térmica o lumínica, entre otras), en energía eléctrica. Para la generación industrial se recurre a instalaciones denominadas centrales eléctricas, que ejecutan alguna de las transformaciones citadas. Estas constituyen el primer escalón del sistema de suministro eléctrico. La generación eléctrica se realiza, básicamente, mediante un generador; si bien estos no difieren entre sí en cuanto a su principio de funcionamiento, varían en función a la forma en que se accionan. Explicado de otro modo, difiere en qué fuente de energía primaria utiliza para convertir la energía contenida en ella, en energía eléctrica.

3.1 Diferencias entre tipos de generación

Dependiendo de la fuente primaria de energía utilizada, las centrales generadoras se clasifican en químicas cuando se utilizan plantas de radioactividad, que generan energía eléctrica con el contacto de esta, termoeléctricas (de carbón, petróleo, gas, nucleares y solares termoeléctricas), hidroeléctricas (aprovechando las corrientes de los ríos o del mar: mareomotrices), eólicas y solares fotovoltaicas. La mayor parte de la energía eléctrica generada a nivel mundial proviene de los dos primeros tipos de centrales reseñados. Todas estas centrales, excepto las fotovoltaicas, tienen en común el elemento generador, constituido por un alternador, movido mediante una turbina que será distinta dependiendo del tipo de energía primaria utilizada.

Los diferentes tipo de generación a provechan las diversas fuentes de energía y los recursos que tenemos en nuestro planeta.

Energía Solar:

Ventajas:

CENTRALES ELECTRICAS 9

Page 10: centrales

UNIVERSIDAD DE CUENCA Energía limpia que no tiene emisiones que pueden causar problemas en el medio

ambiente (contaminación) y el cambio climático.

Fiabilidad y durabilidad (25 a 30 años) y fácil instalación del módulo.

Proviene de una fuente de energía inagotable.

Idóneo para zonas donde el tendido eléctrico no llega (campo).

Fácil mantenimiento.

El costo de los combustibles aumenta con el paso del tiempo porque cada vez hay menos).

Desventajas

El nivel de radiación fluctúa de una zona a otra y de una estación del año a otra.

Para recolectar energía solar a gran escala se requieren grandes extensiones de terreno.

Requiere gran inversión inicial.

Dificultoso y costoso su traslado.

Se debe complementar este método con otros.

No hay luz solar por las noches, ni los días de lluvia.

Rinde poco.

Energía mareomotriz

Se obtiene aprovechando las mareas.

Ventajas

Auto renovable

No contaminante

Silenciosa

Bajo costo de materia prima

No concentra población

Disponible en cualquier clima y época del año

Desventajas

Impacto visual y estructural sobre el paisaje costero

Localización puntual

Dependiente de la amplitud de mareas

Traslado de energía muy costoso

Efecto negativo sobre la flora y la fauna

Limitada

CENTRALES ELECTRICAS 10

Page 11: centrales

UNIVERSIDAD DE CUENCAEnergía Eólica

Aprovecha la energía cinética de las masas de aire para mover unos aerogeneradores que activan

unas turbinas generan energía eléctrica.

Ventajas:

Disminuye la emisión de gases de efecto invernadero.

Puede instalarse en suelos desaprovechados, como zonas desérticas, acantilado, etc.

Puede convivir con actividades de carácter agrícola y ganadero en un mismo espacio.

Es una energía limpia y gratuita.

Desventajas:

Irregularidad del viento.

Necesidad de velocidad mínima de las corrientes de aire para mover los aerogeneradores.

Provoca un cierto impacto ambiental.

Energía Hidráulica

Se basa en aprovechar la fuerza de la caída del agua desde cierta altura, provocando un

movimiento de rotación que finalmente se convierte en energía eléctrica por medio de los

generadores.

Ventajas:

Es inagotable mientras que no varíe el ciclo del agua.

Tiene un bajo coste de mantenimiento.

Tiene un bajo impacto en el ambiente.

Tiene larga vida.

Se puede usar tanto para pequeños consumos como para nivel industrial.

Desventajas

Alto coste en la instalación inicial.

Gran impacto ambiental en caso de centrales hidroeléctricas.

Generación por Hidrogeno

Son sistemas electroquímicos en los que la energía de una reacción química se convierte

directamente en electricidad.

Ventajas:

Su emisión de gases contaminantes es cero.

Durabilidad y requisitos actuales.

CENTRALES ELECTRICAS 11

Page 12: centrales

UNIVERSIDAD DE CUENCA Tienen una vida larga, entre 40.000 horas, en usos estacionarios entre -35Cº y 40º

Desventajas:

Es caro y complicado.

Un gran coste económico, a causa del catalizador.

Energía Geotérmica

Proviene del calor interno de la tierra.

Ventajas:

Coste bajo.

Es una fuente que evitaría la dependencia energética del exterior.

Los residuos que produce son mínimos y ocasionan menor impacto ambiental que los

originados por el petróleo y el carbón.

Desventajas:

Emisión de ácido sulfhídrico y CO2.

Contaminación térmica.

Deterioro del paisaje.

Escasez de yacimientos de fácil acceso.

En algunas áreas puede destruir o degradar bosques u otros ecosistemas

Contaminación del agua, entre alta y moderada, por sólidos disueltos y escurrimiento de

compuestos tóxicos de metales pesados como mercurio y arsénico.

No se puede transportar.

Generación por Biomasa

Materia orgánica transformada en un proceso biológico, que utilizamos como fuente de energía,

Algunos de ellos pueden ser de organismos recientemente vivos o de sus desechos (estiércol).

Ventajas:

Disminución de las emisiones de CO2

No emite contaminantes sulfurados o nitrogenados, ni apenas partículas sólidas.

Si se utilizan residuos de otras actividades como biomasa, esto se traduce en un reciclaje y

disminución de residuos

Permite la introducción de cultivos de gran valor rotacional frente a monocultivos

cerealistas.

Puede provocar un aumento económico en el medio rural.

CENTRALES ELECTRICAS 12

Page 13: centrales

UNIVERSIDAD DE CUENCA Disminuye la dependencia externa del abastecimiento de combustibles.

Desventajas

Tiene un mayor coste de producción frente a la energía que proviene de los combustibles

fósiles.

Menor rendimiento energético de los combustibles derivados de la biomasa en

comparación con los combustibles fósiles.

Producción estacional.

La materia prima es de baja densidad energética lo que quiere decir que ocupa mucho

volumen y por lo tanto puede tener problemas de transporte y almacenamiento.

A manera de resumen se puede decir que la razón de tener diferentes tipos de centrales

generadoras es la versatilidad ya sea en costos de instalación, operación o por flexibilidad a la hora

de entra a funcionar en horas pico como es el caso de una central a gas.

3.2 Diferencias de tener un generador de tipo y otro tipo

Cada tipo de máquina tiene ventajas o inconvenientes respecto a las demás. Este apartado se va a analizar los criterios más importantes a la hora de establecer las posibilidades de utilización de los distintos tipos de máquinas eléctricas, como elemento generador de velocidad constante en un aerogenerador.

Los aerogeneradores con generador eléctrico de corriente continua están totalmente descartados para máquinas de alta potencia, ya que sólo se pueden conectar a la red eléctrica mediante convertidores electrónicos que conviertan la corriente continua a alterna. Únicamente, en aplicaciones aisladas de baja potencia, en las cuales el sistema de acumulación eléctrica utilizado sea una batería, puede tener utilidad. Además, el alto precio de la máquina y el alto coste de mantenimiento (cambio de escobillas, etc.) hacen también que su uso sea marginal.

Los aerogeneradores con generador eléctrico síncrono funcionando a velocidad constante también han caído actualmente en desuso, debido sobre todo a su precio en comparación con el generador asíncrono. También, el complicado sistema de sincronización y el sistema de excitación hacen que su mantenimiento sea más costoso.

Finalmente, el generador asíncrono o de inducción es el más utilizado actualmente en aerogeneradores a velocidad constante, para cualquier nivel de potencias. Las razón es obvia, su bajo precio y su sencillez que hace que no requiera casi mantenimiento. Como desventajas, sobre todo frente al generador asíncrono, están la necesidad de una fuente de potencia reactiva externa (no es auto excitable) y su poca capacidad de sobrecarga.

En las tablas que vienen a continuación se realizan dos comparaciones, la primera más general entre los tres tipos de generadores eléctricos estudiados y la Segunda, en la cual se descarta el

CENTRALES ELECTRICAS 13

Page 14: centrales

UNIVERSIDAD DE CUENCAgenerador en corriente continua y se realiza una comparación más exhaustiva entre el generador síncrono y el asíncrono.

BIBLIOGRAFIA

[1] Plan Maestro de Electrificación 2013-2022[2] Sistemas de Distribución Eléctrica. Cap. 2 Cargas Eléctricas (Ing. Modesto Salgado)[3] http://biblioteca.cenace.org.ec

CENTRALES ELECTRICAS 14