casasolaSeminario

download casasolaSeminario

of 8

Transcript of casasolaSeminario

  • 8/9/2019 casasolaSeminario

    1/17

    CU1401

    Unmanned AerialVehicles. Employment of UAVs by emergency. 

    The concept of emplo ying Unm anned Aer ial Vehic les (UAVs) to acquire imagery

    for disaster research and management has pro gressed into actual implementat ion in

    recent years. UAV usage in disaster assessment , respon se and management i s an

    act ive area of research. UAVs have been ut i l ized fol lowing ecological , meteorological ,

    geological , hydrologic al and hum an - indu ced disasters. The f lex ibi l i ty , safety, ease of

    operat ion, and relat ively low - cost of ownership and operat ion faci l i tate UAV

    implementat ion in di saster si tuat ions.  

    2014 

    Comisión Nacional de Actividades Espaciales

    Maestría AEARTE 2013

    10/10/2014

  • 8/9/2019 casasolaSeminario

    2/17

    Page 2 

    INDEX.

    1.  INTRODUCTION ..............................................................................................................................................

    2.  DEFINITIONS. .................................................................................................................................................

    WHAT'S AN UNMANNED AERIAL VEHICLE? ................................................................................................

    OTHERS DEFINITIONS: .................................................................................................................................

    3.  HISTORY. ........................................................................................................................................................

    4.  CLASSIFICATION. ..........................................................................................................................................

    5.  AN EXAMPLE: UAV BASED CLOSE-RANGE RAPID AERIAL MONITORING SYSTEM. ............................

    AERIAL SECTOR.............................................................................................................................................

    GROUND SECTOR. ........................................................................................................................................

    6.  EXAMPLES OF USE OF UAVS BY EMERGENCY. .......................................................................................

    RADIATION MONITORING .............................................................................................................................

    VOLCANIC MONITORING WITH A THERMAL CAMERA. .............................................................................

    UNMANNED AERIAL VEHICLES - EMPLOYEE AS DETECTION SYSTEM OF ROE DEER FAWN. ..........

    UNMANNED AERIAL VEHICLES - EMPLOYEE AS LOGISTIC SUPPORT. ..................................................

    7.  DEVELOPMENTS IN ARGENTINA. ................................................................................................................

    8.  CONCLUTIONS ...............................................................................................................................................

    9.  REFERENCES. ................................................................................................................................................

    PAPERS. .........................................................................................................................................................

    LINK OF INTEREST.........................................................................................................................................

  • 8/9/2019 casasolaSeminario

    3/17

    Page 3 

    INDEX OF FIGURES.

    Figure 1 - UAV Schiebel´s Camcopter S -100……………………………………………………………………………

    Figure 2 – UAV General Atomics MQ-1 Predator……………………… .................................................................

    Figure 3 – UAV Centurion………………………………………………………..…………………………………………

    Figure 4 - UAV Tetracopter Scout .........................................................................................................................

    Figure 5 – Aerial attack by balloon, 1880 ..............................................................................................................

    Figure 6 – UAV OQ-1 ............................................................................................................................................

    Figure 7 – UAV Global Hawk………………………………………………………………………………………………

    Figure 8 – General Atomics MQ-1 Predator. ........................................................................................................

    Figure 9 – General Atomics MQ-1 Predator. ........................................................................................................

    Figure 10 – UAV DHL Parcelcopter………………………………………...………………………………………………

    Figure 11 – Hexacopter by volcanic monitoring.....................................................................................................

    Figure 12 - Overview of UAV based close-range rapid aerial ................................................................................

    Figure 13 – Schiebel’s Camcopter S-100…………………………………………………………………………………

    Figure 14 – Integrated sensors and supporting modules in the aerial sector .......................................................

    Figure 15 – Deployable ground station…………………………………………………………………………………………………………

    Figure 16 - RF subsystem .....................................................................................................................................

    Figura 17 – UAV md4-1000 with RSD and photo camera as a payload………………………………………………

    Figura 18 - Radiation survey device (RSD) ............................................................................................................Figure 19 – Hexacopter equipped with a thermal camera ready for the vertical take off. .......................................

    Figure 20 – Thermal Camera (TC) 3600 scheme (left); TC and ............................................................................

    Figure 21 - Visible image of the investigated area.t The white surface is due to the presence of salt deposit whil

    the darker are the muddy. .....................................................................................................................................

    Figure 22 – Thermal images acquired by TC3600 in six areas of interest are indicated as point 2, 3,4,5,6. ........

    Figure 23 – Flying Game Guard in action…………………………………………………………………………………

    Figure 24 – ROE DEER FAWN .............................................................................................................................

    Figure 25 – Thermal image of a fawn………………………………………………………………………………………

    Figure 26 – Thermal image cut-outs of typical hot spots at a flight altitude of 30 and 50 m ..................................

    Figura 27 – UAV DHL Parcelcopter .......................................................................................................................

    Figure 28 – UAV Lipan M3 ...................................................................................................................................

    Figure 29 - UAV ARGENTINO GUARDIAN...........................................................................................................

    Figura 30 – VANT MET1 - INVAP ........................................................................................................................

    http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528476http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528476http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528476http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528477http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528477http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528477http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528478http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528478http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528479http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528479http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528479http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528479http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528478http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528478http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528477http://c/Users/FACU/Downloads/DRONES/An%20unmanned%20aerial%20vehicle.docx%23_Toc400528476

  • 8/9/2019 casasolaSeminario

    4/17

    Page 4 

    1. 

    INTRODUCTION

    The concept of employing Unmanned Aerial Vehicles (UAVs) to acquire imagery for disa

    research and management has progressed into actual implementation in recent years.

    UAV usage in disaster assessment, response and management is an active area of resea

    UAVs have been utilized following ecological, meteorological, geological, hydrological and hum

    induced disasters. The flexibility, safety, ease of operation, and relatively low - cost of ownership

    operation facilitate UAV implementation in disaster situations.

    2. DEFINITIONS.

    WHAT IS AN UNMANNED AERIAL VEHICLE?

    An Unmanned Aerial Vehic le   (UAV), commonly known as a drone and referred to aRemotely Piloted Aircraft (RPA) by the International Civil Aviation Organization (ICAO), is an air

    without a human pilot aboard. Its flight is controlled either autonomously by onboard computers or by

    remote control of a pilot on the ground or in another vehicle. The typical launch and recovery metho

    an unmanned aircraft is by the function of an automatic system or an external operator on the gro

    Historically, UAVs were simple remotely piloted aircraft,  but autonomous control is increasingly b

    employed.

    They are usually deployed for military and special operation applications, but also used in a s

    but growing number of civil applications, such as policing and firefighting, and nonmilitary security w

    such as surveillance of pipelines.

    Figure 1 - UAV Schiebel´s Camcopter S -100 Figure 2 – UAV General Atomics MQ-1 Predator

    Figure 3 – UAV Centurion Figure 4 - UAV Tetracopter Scout

    http://en.wikipedia.org/wiki/International_Civil_Aviation_Organizationhttp://en.wikipedia.org/wiki/Aircrafthttp://en.wikipedia.org/wiki/Aviatorhttp://en.wikipedia.org/wiki/Remote_control_vehiclehttp://en.wikipedia.org/wiki/Aviatorhttp://en.wikipedia.org/wiki/Aircrafthttp://en.wikipedia.org/wiki/Militaryhttp://en.wikipedia.org/wiki/Special_operationhttp://en.wikipedia.org/wiki/Policinghttp://en.wikipedia.org/wiki/Firefightinghttp://en.wikipedia.org/wiki/Firefightinghttp://en.wikipedia.org/wiki/Policinghttp://en.wikipedia.org/wiki/Special_operationhttp://en.wikipedia.org/wiki/Militaryhttp://en.wikipedia.org/wiki/Aircrafthttp://en.wikipedia.org/wiki/Aviatorhttp://en.wikipedia.org/wiki/Remote_control_vehiclehttp://en.wikipedia.org/wiki/Aviatorhttp://en.wikipedia.org/wiki/Aircrafthttp://en.wikipedia.org/wiki/International_Civil_Aviation_Organization

  • 8/9/2019 casasolaSeminario

    5/17

    Page 5 

    OTHERS DEFINITIONS:

    a.  Model Aircraft: A remote controlled aircraft used by hobbyists, which is manufactured

    operated for the purposes of sport, recreation and/or competition.

    b.  Unmanned Aerial Vehicle Pilot: A person exercising control over an unmanned aerial vehicleduring flight.

    c.  Unmanned Aerial Vehicle Flight Crewmember: A pilot, visual observer, payload operator or otperson assigned duties for a UAVfor the purpose of flight.

    3. HISTORY.

    Figure 5 – Aerial attack by balloon, 1880

     

    The idea of a pilotless aircraft is not a new concept. The concept of drones dates back to the

    1800s, when Austrians sent off unmanned, bomb-filled balloons as a way to attack Venice. The d

    we see today started innovation in the early 1900s, and was originally used for target practice to t

    military personnel.

      The first pilotless aircraft were built shortly after World War I. Leading the way, using A. M. L

    radio control techniques, was the Ruston Proctor Aerial Target of 1916.

      The early successes of pilotless aircraft led to the development of radio controlled pilotless ta

    aircraft in Britain and the US in the 1930s.

    Figure 6 – UAV OQ-1

  • 8/9/2019 casasolaSeminario

    6/17

    Page 6 

      Its evolution and development during World War II and during the Cold War came to incorpo

    various devices like photographic cameras RGB, multispectral cameras, laser systems, GPS and

    systems and radar systems. Examples are UAV Global Hawk and General Atomics MQ-1 Predator.

    Figure 7 – UAV Global Hawk Figure 8 – General Atomics MQ-1 Predator

    Figure 9 – General Atomics MQ-1 Predator.

      In a recent few years, disasters and accidents, such as the volcanic eruptions, wildfires (fo

    fires) or others types of natural disaster, generated that the use of UAVs have civil and comme

    purposes. Beyond the military applications of UAVs with which "drones" became most associa

    numerous civil aviation uses have been developed, including aerial surveying of crops, acrobatic a

    footage in filmmaking, search and rescue operations, inspecting power lines and pipelines, and coun

    wildlife, delivering medical supplies to remote or otherwise inaccessible regions, with s

    manufacturers rebranding the technology as "unmanned aerial systems" (UASs) in preference

    "drones." UAVs are nowadays routinely used in several applications where human interaction is diff

    or dangerous. These applications range from military to civilian and include reconnaissance operati

    border patrol missions, forest fire detection, surveillance, and search/rescue missions.

      UAV remote sensing functions include electromagnetic spectrum sensors, gamma ray sens

    biological sensors, and chemical sensors. A UAV's electromagnetic sensors typically include vi

    spectrum, infrared, or near infrared cameras as well as radar systems. Other electromagnetic w

    detectors such as microwave and ultraviolet spectrum sensors can also be used but are uncomm

    Biological sensors are sensors capable of detecting the airborne presence of various microorgan

  • 8/9/2019 casasolaSeminario

    7/17

    Page 7 

    and other biological factors. Chemical sensors use laser spectroscopy to analyze the concentration

    each element in the air.

      Unmanned Aerial Vehicles transport medicines and vaccines, and retrieve medical samples,

    and out of remote or otherwise inaccessible regions. Drones can help in disaster relief by gathe

    information from across an affected area. Drones can also help by building a picture of the situation giving recommendations like how people should direct their resources to mitigate damage and s

    lives.

    Figure 10 – UAV DHL Parcelcopter. Figure 11 – Hexacopter by volcanic monitoring.

    4. CLASSIFICATION

    UAVs are typically into one of six functional categories (although multi-role airframe platforms

    becoming more prevalent):

    a.  Target and decoy – providing ground and aerial gunnery a target that simulates an enemy air

    or missile.

    b.  Reconnaissance – providing battlefield intelligence.

    c.  Combat – providing attack capability for high-risk missions (see Unmanned Combat Air Vehic

    d.  Logistics – UAVs specifically designed for cargo and logistics operation.

    e.  Research and development – used to further develop UAV technologies to be integrated into

    deployed UAV aircraft.

    f. 

    Civil and Commercial UAVs –  UAVs specifically designed for civil and commercial application

    They can also be categorized in terms of range/altitude and the following has been advanced

    relevant at such industry events as ParcAberporth Unmanned Systems forum:

    a.  Hand-held 2,000 ft (600 m) altitude, about 2 km range.

    b.  Close 5,000 ft (1,500 m) altitude, up to 10 km range.

    http://en.wikipedia.org/wiki/Unmanned_combat_air_vehiclehttp://en.wikipedia.org/wiki/ParcAberporthhttp://en.wikipedia.org/wiki/ParcAberporthhttp://en.wikipedia.org/wiki/Unmanned_combat_air_vehicle

  • 8/9/2019 casasolaSeminario

    8/17

    Page 8 

    c.  NATO type 10,000 ft (3,000 m) altitude, up to 50 km range.

    d.  Tactical 18,000 ft (5,500 m) altitude, about 160 km range.

    e.  MALE (medium altitude, long endurance) up to 30,000 ft (9,000 m) and range over 200 km.

    f.  HALE (high altitude, long endurance) over 30,000 ft (9,100 m) and indefinite range.

    g. 

    HYPERSONIC high-speed, supersonic (Mach 1 –5) or hypersonic (Mach 5+) 50,000 ft (15,20

    or suborbital altitude, range over 200 km.

    h.  ORBITAL low earth orbit (Mach 25+).

    i.  CIS Lunar Earth-Moon transfer.

     j.  CACGS Computer Assisted Carrier Guidance System for UAVs.

    5.  AN EXAMPLE: UAV BASED CLOSE-RANGE RAPID AERIAL MONITORING SYST

    UAV based close-range rapid aerial monitoring system for emergency responses consists ofmain sectors, aerial sector and ground sector. The aerial sector Includes a UAV platform, sensors supporting modules.

    The ground sector also consists of a ground vehicle, receiving system and processing sysThrough a RF link between the both sectors, the sensory data and control commands are transmittereal-time. The overview of our whole system is illustrated next figure.

    Figure 12 - Overview of UAV based close-range rapid aerialmonitoring system

    http://en.wikipedia.org/wiki/Medium-altitude_long-endurance_unmanned_aerial_vehiclehttp://en.wikipedia.org/wiki/Medium-altitude_long-endurance_unmanned_aerial_vehicle

  • 8/9/2019 casasolaSeminario

    9/17

    Page 9 

    AERIAL SECTOR.

    The aerial sector acquires the sensory data and transmits the data to the ground sector in rea

    time. The aerial sector consists of a UAV platform equipped with different types of sensor: camera, lascanner, GPS, IMU, and the supporting modules for sensor integration, data transmission to the groudata storage, time synchronization and sensor stabilization.

    Figure 13 – Schiebel’s Camcopter S-100 Figure 14 – Integrated sensors and supporting modules in the aerial

    GROUND SECTOR.

    The ground sector receives the sensory data from the aerial sector in real-time and producesspatial information such as DEM and orthoimages rapidly.

    The ground sector is deployable and consists of a ground vehicle, a receiving and processing

    system. In this example we construct the ground sector by remodelling a 2.5 ton truck as the groundvehicle and loading it with the receiving and processing system, as shown in next figure.

    The receiving system transmits the control commands and receives the data through a RF link real-time. The processing system performs real-time georeferencing and rapid generation of the spatinformation. 

    Figure 15 – Deployable ground station Figure 16 - RF subsystem

  • 8/9/2019 casasolaSeminario

    10/17

    Page 10 

    6. 

    EXAMPLES OF USE OF UAVS BY EMERGENCY.

    RADIATION MONITORING

    Figura 17 – UAV md4-1000 with RSD and photo camera as a payload Figura 18 - Radiation survey device (RSD

    Radiation survey device (RSD) on the base of unmanned aerial vehicle (UAV) was developed

    an equipment of rescue forces for radiation situation reconnaissance in case of emergency.

    RSD is multi range radiometer with spectrometer functions capable to work within gamma ray

    fields of dose rate 10-7  – 10-1 Sievert per hour. UAV md4-1000 (Microdrones GmbH, Germany) was

    selected as the RSD carrier as a reliable vehicle with appropriate properties.

    VOLCANIC MONITORING WITH A THERMAL CAMERA.

    This device is used for see the thermal anomalies in surface earth.

    The thermal camera is

    used for cross-comparison with the data acquired during the flight.

    In this example the camera is a A310 model consisting of a 320x240 microbolometer detector a

    to a range of 8  –  14 µm of sensitive defection capability, with dynamic range of 0 to +350 °C

    accuracy of ±2% of reading.

  • 8/9/2019 casasolaSeminario

    11/17

    Page 11 

    Figure 19 – Hexacopter equipped with a thermal cameraready for the vertical take off.

    Figure 20 – Thermal Camera (TC) 3600 scheme (left); TC andembedded acquisition system (EAS) final configuration (right).

    Figure 21 - Visible image of the investigated area.t The white surfaceis due to the presence of salt deposit while the darker are the muddy. 

    Figure 22 – Thermal images acquired by TC3600 in six areasof interest are indicated as point 2, 3,4,5,6.

  • 8/9/2019 casasolaSeminario

    12/17

    Page 12 

    UNMANNED AERIAL VEHICLES - EMPLOYEE AS DETECTION SYSTEM OF ROE DEER FAWN

    In adequate illuminating and weather conditions the presented UAV-based fawn detection

    thermal imaging is a comfortable, fast and reliable method.

    There is a high demand because during pasture mowing are a lot of wild animals, especially

    deer fawns are killed by mowing machines.

    This system was tested in several real situations especially with differing weather and illuminaconditions. Its primary sensor is a lightweight thermal infrared camera.

    The images are captured onboard of the flight system and also transmitted as analog vstream to the ground station, where the user can follow the camera live stream on a monitor for maanimal detection.

    Figure 23 – Flying Game Guard in action. Figure 24 – ROE DEER FAWN

    Figure 25 – Thermal image of a fawn. Figure 26 – Thermal image cut-outs of typical hot spots at a flight altitude of 30 and

    UNMANNED AERIAL VEHICLES - EMPLOYEE AS LOGISTIC SUPPORT.

    Recently (Sep 2014) the logistics firm DHL used a drone to overfly parcels to the German islan

    Juist, in what it says is the first time an unmanned aircraft has been authorized to deliver good

    Europe.

  • 8/9/2019 casasolaSeminario

    13/17

    Page 13 

    The UAV employed was the DHL Parcelcopter. Technical innovations that comprise the

    Parcelcopter include longer range and flight: the journey to the island is about 12 kilometers

    average flying height of 50 meters.

    Figura 27 – UAV DHL Parcelcopter

    7.  DEVELOPMENTS IN ARGENTINA.

      The early development of drones or UAV in Argentina started more o less in the year of 1996 with

    the generation of UAV LIPAN M3, UAV generated and developed entirely by the Argentine Army

    surveillance and ground reconnaissance.

    Figure 28 – UAV Lipan M3

      Meanwhile the Argentina Navy has developed a similar device called UAV ARGENTINO

    GUARDIAN.

    Figure 29 - UAV ARGENTINO GUARDIAN.

  • 8/9/2019 casasolaSeminario

    14/17

    Page 14 

      In November of 2010 the ROBOTIC SYSTEM AIR ARGENTINE (SARA for it Spanish name) created under the Resolution No. 1484 of the Ministry of Defense, that recognizes the neeprovide national defense unmanned aerial systems for monitoring and control of large air spaland and sea of the country.

     

    The purpose of the project SARA is to generate devices capable of delivering different paylosufficient to meet the operational requirements of the own autonomous system.

      The program also includes the deployment of ground control stations and portable units receinformation to ground crew.

      The Ministry of Defense commissioned the responsibility for the design and management of SARINVAP industries.

      The first model was developed by INVAP and received the name of MET1, which in August 2made its first test flight in the city of Cordoba.

    Figura 30 – VANT MET1 - INVAP

  • 8/9/2019 casasolaSeminario

    15/17

    Page 15 

    8. 

    CONCLUTIONS

    As the occurrences and scales of disasters and accidents have been increased for example to the global warming and other reasons, the demand for rapid responses for the emergent situatalso has been increasing too. These emergency responses are required to be customized to eindividual site for more effective management of the emergent situations and simplify the decisioncrisis situations.

    These requirements can be satisfied with the decisions based on the spatial changes ontarget area, which should be detected immediately or in real-time moment.

    Aerial monitoring without human operators is an appropriate means because the emergeareas are usually inaccessible. Therefore, a UAV is a strong candidate as a platform for the amonitoring. In addition, the sensory data from the UAV system usually have higher resolution than osystem because the system can operate in a lower altitude.

    If the transmission and processing of the data could be performed in real-time, the spchanges of the target area can be detected with high spatial and temporal resolution for the UAV r

    mapping systems.

    Finally, employing unmanned aerial vehicles, a minor property damage and less loss of hulife is obtained.

  • 8/9/2019 casasolaSeminario

    16/17

    Page 16 

    9. 

    REFERENCES.

    PAPERS.

    1.  S. Amici, M. Turci, F. Giulietti, S. Giammanco, M.F Buongiorno, A. La Spina and L. Spampina

    Volcanic Environm ents Monitoring by Dron es Mud Volcano Case Study  - International Archof the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W2, 2

    UAV-g2013, 4 – 6 September 2013, Rostock, Germany.

    2.  J. Ever - The Use Of Unmanned Aerial Vehic les (UAVs) For Remo te Sensing And MappinRemote Sensing and Earth Observation Processes Unit, Flemish Institute for TechnologResearch (VITO), Boereta ng 200, BE-2400 Mol, Belgium –  [email protected]

    3.  Chiabrando,A. Lingua, M. Piras Direct Photog rammetry Using Uav: Tests An d First Resul

    Politecnico di Torino, DAD, 10129, Torino, Italy,  [email protected]  , Politecnico di ToDIATI, 10129, Torino, Italy,(andrea.lingua, marco.piras)@polito.it - International Archives of

    Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W2, 2013 Ug2013, 4 – 6 September 2013, Rostock, Germany.

    4.  Pdf Presentación sobre desarrollo y en empleo de UAV, por el Grupo de Estudio y DesarrolloTecnologías de Información Geográfica (GEDTIG) y la Universidad Tecnológica Nacional FacuRegional Resistencia. Año2014.

    5.  Stuart M. Adams, and Carol J. Friedland - A Sur vey Of Unman ned Aerial Vehicle (Uav) UsFor Imagery Collect ion In Disaster Research An d Management. 

    6. 

    Martin Israel - A Uav-Based Roe Deer Fawn Detection System   - Remote Sensing Techno

    Institute, Experimental MethodsGerman Aerospace Center Oberpfaffenhofen, 82234 WessGermany [email protected]://www.dlr.de/caf   - International Archives of the PhotogrammRemote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22 UAV-g 2011, ConferencUnmanned Aerial Vehicle in Geomatics, Zurich, Switzerland.

    7. 

    S. Bogatov, N. Mazny, A. Pugachev, S. Tkachenko, A.Shvedov - Emergency Radiat ion SuDevice Onbo ard The Uav  - Nuclear Safety Institute, 115191 Moskow, B Tulskaya str. 52, Rus(sbg, tsa, [email protected]). SPC ASPECT, 141980 Moscow region, Dubna, Sakharova stRussia  –  (nikitos, [email protected]). International Archives of the Photogrammetry, RemSensing and Spatial Information Sciences, Volume XL-1/W2, 2013 UAV-g2013, 4  –  6 Septem2013, Rostock, Germany.

    mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://www.dlr.de/cafmailto:[email protected]://www.dlr.de/cafmailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]://www.dlr.de/cafmailto:[email protected]:[email protected]

  • 8/9/2019 casasolaSeminario

    17/17

    Page 17 

    LINK OF INTEREST.

    1.  http://www.microdrones.co.uk/emergency-services-uav-uas.html 

    2.  http://vimeo.com/57919380 

    3.  http://www.microdrones.co.uk/pdfs/ar180_summary_spec.pdf 

    4. 

    http://www.atyges.es/1/i_d_i_drones_y_aereovision_266965.html  

    5.  http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-2/81/2013/isprsarchives-XL-1-W2-81

    2013.html 

    6. 

    http://www.isprs.org/proceedings/XXXVII/congress/1_pdf/203.pdf  

    7.  http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4781575&url=http%3A%2F%2Fieeexplore.ieee.org%

    xpls%2Fabs_all.jsp%3Farnumber%3D4781575 

    8.  http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W2/5/2013/isprsarchives-XL-1-W2-5

    2013.pdf 

    9. 

    http://www.iafc.org/Admin/ResourceDetail.cfm?ItemNumber=7356  10.  http://www.tech4relief.com/2013/10/09/exploring-the-use-of-drones-in-emergency-response/  

    11.  http://www.tech4relief.com/2014/03/18/humanitarian-uav-users-are-beginning-to-self-organize/  

    12.  http://www.gizmag.com/go/2440/  

    13.  http://en.wikipedia.org/wiki/AeroVironment 

    14.  http://reportaje2056.blogspot.com.ar/2012/09/aviones-sin-piloto-que-no-se-entere.html  

    15.  file:///C:/Users/FACU/AppData/Local/Temp/PELICANO_Esp_0.pdf  

    16.  http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/247/2011/isprsarchives-

    XXXVIII-1-C22-247-2011.pdf 

    17. 

    http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/51/2011/isprsarchives-

    XXXVIII-1-C22-51-2011.pdf 

    18.  http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLGT201106004.htm 

    19.  http://www.runco.com.ar/  

    VIDEOS

    20.  https://www.youtube.com/watch?v=-63Qwyl64Zc  - Video INVAP.

    21. 

    https://www.youtube.com/watch?v=-Iv2j3EzI9E  – Video Wildfire

    22.  https://www.youtube.com/watch?v=rpN8VQ_UL4c Video Taken By Robotic Aerial Vehicle at Fukushima (2

    23.  https://www.youtube.com/watch?v=i6JLM4Y_mz0 Vivo en Argentina Ciencia y Tecnología Lipán 12 10

    24.  https://www.youtube.com/watch?v=e-aE01r6Cjc UAV Guardian 'Armada Argentina'.

    25.  https://www.youtube.com/watch?v=0-shWVW1UBc Dji Phantom flies into Volcano. 

    http://www.microdrones.co.uk/emergency-services-uav-uas.htmlhttp://www.microdrones.co.uk/emergency-services-uav-uas.htmlhttp://vimeo.com/57919380http://vimeo.com/57919380http://www.microdrones.co.uk/pdfs/ar180_summary_spec.pdfhttp://www.microdrones.co.uk/pdfs/ar180_summary_spec.pdfhttp://www.atyges.es/1/i_d_i_drones_y_aereovision_266965.htmlhttp://www.atyges.es/1/i_d_i_drones_y_aereovision_266965.htmlhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-2/81/2013/isprsarchives-XL-1-W2-81-2013.htmlhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-2/81/2013/isprsarchives-XL-1-W2-81-2013.htmlhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-2/81/2013/isprsarchives-XL-1-W2-81-2013.htmlhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-2/81/2013/isprsarchives-XL-1-W2-81-2013.htmlhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-2/81/2013/isprsarchives-XL-1-W2-81-2013.htmlhttp://www.isprs.org/proceedings/XXXVII/congress/1_pdf/203.pdfhttp://www.isprs.org/proceedings/XXXVII/congress/1_pdf/203.pdfhttp://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4781575&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4781575http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4781575&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4781575http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4781575&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4781575http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4781575&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4781575http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4781575&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4781575http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W2/5/2013/isprsarchives-XL-1-W2-5-2013.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W2/5/2013/isprsarchives-XL-1-W2-5-2013.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W2/5/2013/isprsarchives-XL-1-W2-5-2013.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W2/5/2013/isprsarchives-XL-1-W2-5-2013.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W2/5/2013/isprsarchives-XL-1-W2-5-2013.pdfhttp://www.iafc.org/Admin/ResourceDetail.cfm?ItemNumber=7356http://www.iafc.org/Admin/ResourceDetail.cfm?ItemNumber=7356http://www.tech4relief.com/2013/10/09/exploring-the-use-of-drones-in-emergency-response/http://www.tech4relief.com/2013/10/09/exploring-the-use-of-drones-in-emergency-response/http://www.tech4relief.com/2014/03/18/humanitarian-uav-users-are-beginning-to-self-organize/http://www.tech4relief.com/2014/03/18/humanitarian-uav-users-are-beginning-to-self-organize/http://www.gizmag.com/go/2440/http://www.gizmag.com/go/2440/http://en.wikipedia.org/wiki/AeroVironmenthttp://en.wikipedia.org/wiki/AeroVironmenthttp://reportaje2056.blogspot.com.ar/2012/09/aviones-sin-piloto-que-no-se-entere.htmlhttp://reportaje2056.blogspot.com.ar/2012/09/aviones-sin-piloto-que-no-se-entere.htmlhttp://c/Users/FACU/AppData/Local/Temp/PELICANO_Esp_0.pdfhttp://c/Users/FACU/AppData/Local/Temp/PELICANO_Esp_0.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/247/2011/isprsarchives-XXXVIII-1-C22-247-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/247/2011/isprsarchives-XXXVIII-1-C22-247-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/247/2011/isprsarchives-XXXVIII-1-C22-247-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/247/2011/isprsarchives-XXXVIII-1-C22-247-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/247/2011/isprsarchives-XXXVIII-1-C22-247-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/51/2011/isprsarchives-XXXVIII-1-C22-51-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/51/2011/isprsarchives-XXXVIII-1-C22-51-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/51/2011/isprsarchives-XXXVIII-1-C22-51-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/51/2011/isprsarchives-XXXVIII-1-C22-51-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/51/2011/isprsarchives-XXXVIII-1-C22-51-2011.pdfhttp://en.cnki.com.cn/Article_en/CJFDTOTAL-DLGT201106004.htmhttp://en.cnki.com.cn/Article_en/CJFDTOTAL-DLGT201106004.htmhttp://www.runco.com.ar/http://www.runco.com.ar/https://www.youtube.com/watch?v=-63Qwyl64Zchttps://www.youtube.com/watch?v=-63Qwyl64Zchttps://www.youtube.com/watch?v=-Iv2j3EzI9Ehttps://www.youtube.com/watch?v=-Iv2j3EzI9Ehttps://www.youtube.com/watch?v=rpN8VQ_UL4chttps://www.youtube.com/watch?v=rpN8VQ_UL4chttps://www.youtube.com/watch?v=i6JLM4Y_mz0https://www.youtube.com/watch?v=i6JLM4Y_mz0https://www.youtube.com/watch?v=e-aE01r6Cjchttps://www.youtube.com/watch?v=e-aE01r6Cjchttps://www.youtube.com/watch?v=0-shWVW1UBchttps://www.youtube.com/watch?v=0-shWVW1UBchttps://www.youtube.com/watch?v=0-shWVW1UBchttps://www.youtube.com/watch?v=e-aE01r6Cjchttps://www.youtube.com/watch?v=i6JLM4Y_mz0https://www.youtube.com/watch?v=rpN8VQ_UL4chttps://www.youtube.com/watch?v=-Iv2j3EzI9Ehttps://www.youtube.com/watch?v=-63Qwyl64Zchttp://www.runco.com.ar/http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLGT201106004.htmhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/51/2011/isprsarchives-XXXVIII-1-C22-51-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/51/2011/isprsarchives-XXXVIII-1-C22-51-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/247/2011/isprsarchives-XXXVIII-1-C22-247-2011.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/247/2011/isprsarchives-XXXVIII-1-C22-247-2011.pdfhttp://c/Users/FACU/AppData/Local/Temp/PELICANO_Esp_0.pdfhttp://reportaje2056.blogspot.com.ar/2012/09/aviones-sin-piloto-que-no-se-entere.htmlhttp://en.wikipedia.org/wiki/AeroVironmenthttp://www.gizmag.com/go/2440/http://www.tech4relief.com/2014/03/18/humanitarian-uav-users-are-beginning-to-self-organize/http://www.tech4relief.com/2013/10/09/exploring-the-use-of-drones-in-emergency-response/http://www.iafc.org/Admin/ResourceDetail.cfm?ItemNumber=7356http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W2/5/2013/isprsarchives-XL-1-W2-5-2013.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-W2/5/2013/isprsarchives-XL-1-W2-5-2013.pdfhttp://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4781575&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4781575http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4781575&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4781575http://www.isprs.org/proceedings/XXXVII/congress/1_pdf/203.pdfhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-2/81/2013/isprsarchives-XL-1-W2-81-2013.htmlhttp://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-1-2/81/2013/isprsarchives-XL-1-W2-81-2013.htmlhttp://www.atyges.es/1/i_d_i_drones_y_aereovision_266965.htmlhttp://www.microdrones.co.uk/pdfs/ar180_summary_spec.pdfhttp://vimeo.com/57919380http://www.microdrones.co.uk/emergency-services-uav-uas.html