BASES FISICAS

18
1 UNIVERSIDAD NACIONAL DEL ALTIPLANO PUNO ASOCIACION DE MEDICOS DEL INSTITUTO NACIONAL MATERNO PERINATAL Centro Latinoamericano de Investigacion Infanto Materno Perinatal MODULO I DIPLOMADO DE OBSTETRICIA DE ALTO NIVEL IMA – 2012 I N S T I T U T O N A C I O N A L M A T E R N O P E R I N A T A L A S O C I A C I O N D E M E D I C O S

description

BASES FISICAS

Transcript of BASES FISICAS

Page 1: BASES FISICAS

1

UNIVERSIDAD NACIONAL DEL ALTIPLANO PUNO

ASOCIACION DE MEDICOS DEL INSTITUTO NACIONAL MATERNO PERINATAL

Centro Latinoamericano de Investigacion Infanto Materno Perinatal

MODULO I

DIPLOMADO DE OBSTETRICIA DE ALTO NIVEL

IMA – 2012

INS

TIT

UTO

NACIONAL MATERNO

PER

INA

TA

L

AS

O

CIA

CION DE MED

ICO

S

Page 2: BASES FISICAS

Diplomado en “Ecografía de Alto Nivel ” Módulo I

2

TEMA N° 2

BASES FISICAS DEL

ULTRASONIDO, EFECTO

PIEZOELÉCTRICO

Dr. Antonio Limay

Page 3: BASES FISICAS

Diplomado en “Ecografía de Alto Nivel ” Módulo I

3

INTRODUCCION

El método ultrasonográfico se basa en el fenómeno e interacción el sonido y los tejidos, es decir, a partir de la transmisión de la onda sonora por el medio observamos las propiedades mecánicas del os tejidos. Así , se hace necesario el conocimiento de los fundamentos físicos y tecnológicos involucrados en la formación de las imágenes, la manera por la cual las señales obtenidas o esta técnica son detectadas, caracterizadas y analizadas correctamente propiciando una interpretación diagnostica correcta. Además de esto, el desarrollo continuo de nuevas técnicas, a saber, el mapeo Doppler, los medios de contraste, los sistemas de procesamiento de imágenes tridimensionales (3D), las imágenes de armonía y elastometría, exigen un conocimiento aun más amplio de los fenómenos físicos, los cuales serán discutidos en este capítulo. SONIDO El sonido es una vibración mecánica que oscila en la faja audible por el oído humano con frecuencia entre 16 y 20.000 ciclos por segundo. Ultrasonido son vibraciones mecánicas por encima de 20.000 ciclos por segundo. El sonio posee propiedades ondulatorias, a semejanza de las ondas ectromagnéticas como la luz, y presenta efectos diversos de interacción con el medio, tales como refracción, reflexión, atenuación, difracción, interferencia y emisión. Las características del fenómeno sonoro están relacionadas con su fuente y su medio de propagación. Variables como presión, densidad del medio, temperatura y movilidad de las partículas definen el comportamiento de la onda sonora a lo largo de propagación. La propagación de la onda sonora provoca vibraciones del medio material, produciendo reflexiones en relación con la dirección de la propagación del sonido, con áreas de compresión y rarefacción alternadas y periódicas. Estas deflexiones pueden ser tanto transversales (movimiento transversal en dirección de la propagación de la onda) como longitudinales (movimiento oscilatorio en la misma dirección de propagación del sonido). Como en el agua y en los gases la transmisión de la onda sonora aplicada al medio ocurre apenas por compresiones y rearefacciones a lo largo del plano longitudinal (paralelo al sentido de propagación de la onda sonora), los métodos ultrasonográficos aplicados a la medicina utilizan apenas ondas longitudinales (Fig. 1-1)

Page 4: BASES FISICAS

Diplomado en “Ecografía de Alto Nivel ” Módulo I

4

Cualquier sonido es el resultado de la propagación de estas vibraciones mecánicas a través de un medio material, cargando energía y no materia, ya que su movilidad está dentro de los límites de acción de la Ley de Hooke (Robert Hooke, matemático y astrónomo inglés. 1635 - 1703)

F = - kx Donde “F” es la fuerza que es proporcional a un deslocamiento “x”, dentro de límites discretos (en nuestro caso, relacionando las fuerza de atracción intermoleculares del medio de propagación) y una constante “k”, característica del medio. Así, cuando las partículas de un medio son reflejadas por la onda en propagación, volverán posteriormente a su estado original, transmitiendo sólo energía y movimiento, no teniendo resultante de movimiento de materia.

ONDAS SONORAS Los conceptos físicos fundamentales que caracterizan la onda sonora son:

1. Tamaño de la onda (λ): distancia entre los fenómenos de compresión y rarefacción sucesivos, medidos en metros (m).

2. Frecuencia (f): número de ciclos completos de oscilación producidos en un segundo, medida en Hertz (Hz).

3. Periodo (T) : tiempo característico en que el mismo fenómeno se repite (inverso de la frecuencia).

4. Amplitud (A) : magnitud o intensidad de la onda sonora proporcional a la deflexión máxima de las partículas del medio de transmisión. La onda sonora puede ser caracterizada en relación con el tamaño de la onda, frecuencia y velocidad.

λ = cf

f = λ

Fig. 1-1

Page 5: BASES FISICAS

Diplomado en “Ecografía de Alto Nivel ” Módulo I

5

-------

c

f = λ

-------

f

La frecuencia de la onda sonora determina la capacidad del estudio ecográfico en discriminar dos puntos próximos en un área de interés, definida como resolución espacial del método: a mayor frecuencia, menor tamaño de la onda sonora y mejor resolución espacial. La velocidad del sonido (c) es constante por cada material y depende tanto de las propiedades elásticas como de la propia densidad del medio, pudiendo ser calculada a través de la relación entre un factor de fuerza elástica y un factor de inercia del medio. Como en los tejidos biológicos, ricos en agua y gases, no hay módulo elástico, la velocidad de propagación del sonido está relacionada al módulo de variación volumétrica (compresibilidad) del medio (B) cuando es sometido a la presión y

densidad del medio (ƿ). De este modo tenemos:

La velocidad del sonido en los medios biológicos varía mucho: equivale a 340 m/s en el aire, cerca de 1.200 m/s en líquido y cerca de 5.000 m/s en el sólido. La variación de la velocidad en función de la frecuencia es denominada “dispersión” y es despreciable en los sólidos (< 1%). Otros conceptos inherentes al fenómeno de interacción sonido – tejido también deben ser considerados: absorción e impedancia acústica. La absorción es extremadamente dependiente de la frecuencia y de la temperatura del medio: a mayor frecuencia, mayor será la atenuación. La impedancia acústica (Z) es caracterizada por el grado de dificultad o resistencia del medio a la conducción del haz sonoro, definida por el producto de la velocidad del sonido y la densidad del medio.

Page 6: BASES FISICAS

Diplomado en “Ecografía de Alto Nivel ” Módulo I

6

EFECTO PIEZOELÉCTRICO

PIEZO ELECTRICIDAD El haz sonoro es generado por dispositivos denominados “transductores”, compuestos por materiales sólidos que presentan la característica de transforma un tipo de energía en otro: cuando son sometidos a un estrés mecánico generan una diferencia potencial eléctrico y, análogamente, cuando son sometidos a un pulso eléctrico, presentan una deformación espacial que genera una

onda mecánica. Este defecto de transducción, denominado piezoeléctrico (del griego πϊεζυ, presión), fue descrito por Jacques y Pierre Curie en 1880, es producido pr sólidos con retículo cristalino que presentan un centro de sinmetría que permite una inversión de la posición. Varios elementos sólidos poseen esta propiedad, como el cuarzo, la turmalina, el sulfato de litio, el titanato de bario y los cristales de sales de Rochelle (tartarato de sodio o de potasio). Los elementos piezoeléctricos pueden ser moldeados de varias formas, pudiendo resonar en relación a su diámetro o a su espesor. Generalmente, se escogen resonadores de espesor, debido a que la frecuencia de base de la vibración de los mismos será inversamente proporcional a su espesura. Cada uno de los elementos piezoeléctricos, cuando son excitados, emite un pulso ultrasónico que interactúa con el medio de transmisión y ocasionalmente con los pulsos subsecuentes. La vibración producida es compuesta por varias frecuencias o una banda espectral. Presenta una frecuencia de resonancia principal (llamada “frecuencia central” o “frecuencia nominal”) y otras frecuencias distintas (de valore mayores o menores). Las imágenes ultrasonográficas son formadas pro ecos de corta duración generados a partir de pulsos breves emitidos por el equipo a través del transductor. Los sistemas pulsados de transmisión del haz sonoro exifen que estos transductores respondan rápidamente al os pulsos eléctricos y a los pulsos mecánicos, permitiendo la producción de pulsos muy cortos (cerca de pocos microsegundos). Esta capacidad de respuesta rápida es obtenida a través de elementos de baja impedancia y bajo coeficiente de acoplamiento mecánico. TRANSDUCTORES Los transductores (o sondas) utilizados en ultrasonografía son montados de manera tal que produzcan adecuadamente el haz ultrasónico y recibir los ecos generados por las diversas interfases. Actualmente, los transductores están constituidos por conjuntos compactos de elementos piezoeléctricos distribuidos a lo largo de su superficie, en arreglos de fase, los cuales definen la geometría de la imagen formada (Fig. 1-2).

Page 7: BASES FISICAS

Diplomado en “Ecografía de Alto Nivel ” Módulo I

7

Además de estos elementos, los transductores son compuestos por: a) aparato electrónico (electrodos para la excitación de los elementos piezoeléctricos y captación de pulsos generados por los ecos), b) una lente acústica, c) material de acoplamiento entre la lente y los elementos

piezoeléctricos (con una espesura de λ/4) y d) material de amortiguamiento posterior (que absorbe las frecuencias indeseables eventualmente producidas, determinando el ancho de la banda espectral del haz producido) (Fig. 1 -3 )

CAMPO ULTRASONICO: FOCO

El foco del campo ultrasónico corresponde a la zona de mayor resolución espacial de un transductor y representa una región de menor espesura del haz acústico. Algunos equipos poseen foco fijo, definido por las características geométricas del transductor. Otros presentan un orden de elementos piezoeléctrico a lo largo de una dirección dada, conocido como arreglo de fase (phased array). El disparo secuencial de estos elementos produce un haz con rente de onda curva cuyo foco corresponde a un punto focal de haz. El equipo puede procesar la focalización controlando el disparo de algunos elementos piezoeléctricos (foco de emisión) o por medio del retardo en la transmisión de los pulsos recibidos (foco de recepción).

Page 8: BASES FISICAS

Diplomado en “Ecografía de Alto Nivel ” Módulo I

8

MEDIO La imagen ultrasonográfica está compuesta por señales de intensidad variable relacionados a los efectos acústicos resultantes de la interacción de la onda sonora con el medio, en espacial, la capacidad de reflexión del sonido por lo tejidos con impedancias acústicas diferentes. INTENSIDAD Corresponde a la energía que fluye de una determinada área perpendicular a la dirección de propagación del sonido pro unidad de tiempo y es proporcional al cuadrado de la amplitud en la forma:

I = 2ƿcπ²f²A02

Donde “A0” corresponde a la amplitud máxima. El concepto de intensidad será discutido con mayor profundidad al analizar los efectos biológicos del ultrasonido. Las intensidades del pulso transmitido (T) y el eco recibido (R) pueden ser relacionados en la forma.

T = It

------

Ie

T = It

------

Ie

Donde Ie, It e Ir corresponden a la intensidad emitida, transmitida y reflejada.

IMPEDANCIA ACUSTICA Impedancia (del latín impedire) es el término utilizado para designar el grado de dificultad o resistencia ofrecida por el medio a la conducción del haz ultrasónico. Análogamente a los circuitos eléctricos, corresponden a la resistencia de una conductor a una corriente alterna. Impedancia compleja (Z) está definida por dos componentes (R e iX)

Z = R + iX Una parte real denominada resistencia (R), análoga a la resistencia en un circuito de corriente continua y de una parte imaginaria (iX), denominada “reactancia”, que corresponde a la dependencia de fase entre la diferencia de potencial y la corriente en circuitos de corriente alterna. En el caso del

sonido, la impedancia depende de algunos factores del medio, tales como densidad (ƿ), compresibilidad (B), temperatura y presión externa. Como al temperatura en los medios internos y la presión externa son relativamente estables, la impedancia depende básicamente de la densidad y de la compresibilidad del medio, estando también relacionada directamente al a velocidad de propagación del sonido en el medio (c), según la relación:

Z = c x ƿ

Transmisión, reflexión, refracción

La onda sonora puede ser transmitida, reflejada o refractada, dependiendo del ángulo de incidencia de la misma sobre la interfase reflectora y de la diferencia de la impedancia acústica (Z) entre los medios. La transmisión es realizada sin interferencias angulares cuando no hay diferencia en los Z. Los fenómenos de reflexión y refracción de haz acústico son observados en las situaciones en que los dos medios fronterizos presentan impedancia acústica diferente: la refracción pro medio de un

desvío del haz acústico en relación a un determinado ángulo de interferencia (Ɵi = Ɵr).

Page 9: BASES FISICAS

Diplomado en “Ecografía Morfológica General” Módulo VII

9

Las situaciones específicas de interacción del haz acústico con los tejidos son responsables de imágenes ecográficas peculiares y de artefactos, destacándose atenuación, refuerzo acústico posterior, difracción y dispersión (scattering). ATENUACION La propagación del sonido a través del medio causa pérdidas sucesivas de la intensidad de la señal en función de la distancia recorrida bajo una forma de absorción (transformación en calor), reflexión, dispersión y pérdidas geométricas. De este modo, curre la atenuación del haz acústico que está directamente relacionada con la frecuencia utilizada, en la fórmula:

Atenuación (dB) = frecuencia (MHz) x Distancia recorrida (cm)

La atenuación es medida en decibeles, que corresponde a una relación logarítmica entre dos intensidades: Atenuación (dB) = 10 log I I0 Donde I0 corresponde a la intensidad de la señal emitida, que decae en forma exponencial hasta llegar a intensidad I. El fenómeno de atenuación limita el alcance en profundidad de los transductores de alta frecuencia, determinando un componente importante en la estrategia del examen ultrasonográfico: la escogencia del transductor con frecuencia adecuada para obtener un balance equilibrado entre la intensidad de la señal y la resolución espacial. Las estructuras fuertemente atenuantes también pueden causar sombra acústica posterior.

Reforzamiento acústico posterior Debido a la pérdida de potencia acústica acontecida por los efectos acústicos generados por la propagación de un sonido por el medio, los equipos de ultrasonografía poseen un sistema de compensación de intensidad de señal, que permite una ampliación mayor para los ecos originados de las regiones más profundas. Este mecanismo, denominado ganancia de compensación temporal (time-gain compensation o TGC), es utilizado de modo de permitir una caracterización adecuada de la amplitud de la señal a lo largo de toda una imagen. Sin embargo, la ganancia de una compensación en profundidad causa un artefacto interesante: cuando el haz ultrasónico se propaga una región homogénea, de baja atenuación, las estructuras posteriores de esta región presentan ecos más intensos que aquellas adyacentes en la misma profundidad. Este fenómeno, llamado “refuerzo acústico posterior”, es observado de manera característica, en las regiones posteriores de las estructuras quísticas. (Fig. 1-4)

Page 10: BASES FISICAS

Diplomado en “Ecografía Morfológica General” Módulo VII

10

DIFRACCION Y DISPERSIÓN Estos efectos ocurren por la interacción del haz acústico con estructuras pequeñas, de dimensiones semejantes al orden de los tamaños de ondas utilizados: la difracción cuando las extremidades de una estructura interpuesta en el trayecto del haz acústico asumen el papel de fuente sonora y la dispersión o scattering consiste en la reflexión no direccional del pulso ultrasónico. En esta situación, la reflexión no se da de modo preferencial para una dirección, pero ocurren en ondas esféricas (difracción), generando ecos de baja amplitud que interactúan entre sí. El patrón textural de los tonos de grises de los objetos sólidos finamente granulados, como el parénquima hepático, es debido a la difracción y la dispersión de los ecos generados por el medio. (Fig. 1-5)

SISTEMAS PULSADOS En ultrasonografía, las ondas son producidas en pulsos cortos que son emitidos y recibidos alternadamente, permitiendo la caracterización de la profundidad del eco generado por el medio. Esta codificación espacial no sería posible si tuviéramos un sistema de onda continua, pues los ecos generados a diferentes profundidades retornarían sucesivamente al equipo, sin que pudiésemos determinar la profundidad en que se originan.

Page 11: BASES FISICAS

Diplomado en “Ecografía Morfológica General” Módulo VII

11

Durante el intervalo entre un pulso y el subsiguiente, el transductor opera como receptor de los ecos generados en las diferentes interfases a lo largo de la trayectoria del haz acústico. Cada pulso dura cerca de un microsegundo ( s), siendo constituido apenas de algunos ciclos, con intervalo entre los pulsos de cerca de 500 s. Utilizándose la velocidad media del sonido en los tejidos biológicos (1.540 m/s) observamos que un pulso de ultrasonido podrá recorrer en este intervalo de tiempo 77 cm: 38.5 cm como pulso y la misma distancia como eco. Durante este intervalo el transductor recibe primero los ecos generados por las interfaces más superficiales y sucesivamente los ecos más profundos, hasta el límite de 38 cm para cada línea de imagen. De este modo, son muy importantes la velocidad del sonido (determinando la profundidad de la imagen que puede ser obtenida), el tiempo de lactancia (que determina el intervalo de tiempo en que esta imagen puede ser adquirida) y la duración del pulso de ultrasonido. La información recibida como eco es entonces procesada en forma de imágenes.

Modos de presentación Los equipos ultrasonográficos procesan las señales originadas de los reflectores de las siguientes formas: gráficos de amplitud (modo A de amplitud), imágenes bidimensionales (modo B de brillo, estáticas y en tiempo real), además de gráficos de movimiento temporal (modo M de movimiento).

MODO A (AMPLITUD) Los primeros equipos ultrasonográficos procesaban la información en forma de gráficos de amplitud en relación con la profundidad, sistema todavía muy utilizado en la ultrasonografía oftalmológica. De esta manera, un gráfico es presentado en la pantalla del equipo en que cada interfase reflectora es representada en la forma de un pico de amplitud en una dada profundidad.

MODO B (BRILLO) En la década del 1960, comenzaron a surgir los primeros equipos de ultrasonografía que presentaban la información en forma de imágenes seccionales bidimensionales. En ellos, cda eco correspondía a un punto brillante en una pantalla, inaugurando la ultrasonografía de la mane romo la conocemos hoy. Para la construcción de imágenes en modo B, cada línea de imagen corresponde al os ecos generados por un único pulso de ultrasonido. La información recibida como eco es convertida en pulsos eléctricos por el transductor, amplificada y procesada en la forma de una secuencia de puntos brillantes en una pantalla de video. La adquisición de líneas sucesivas a lo largo de una dirección dada permite la construcción de una imagen seccional bidimensional. Los primero equipos reproducían imágenes estáticas, o sea, poseían apenas un elemento piezoeléctrico fijo montado en un brazo mecánico que debía ser movido por el operador a lo largo de la superficie del cuerpo en estudio. Las informaciones eran entonces procesadas en forma de imágenes mientras que el brazo mecánico daba las coordenadas de reconstrucción a lo largo de la trayectoria de reconstrucción. Un avance tecnológico importante fue la incorporación de los equipos de barredura automática (llamados “en tiempo real”), en los cuales un elemento piezoeléctrico se movía en una trayectoria definida, generalmente oscilando en un eje, permitiendo la barredura automática de un sector del cuerpo en intervalos de tiempo variables (Fig. 1 -6 ).

Page 12: BASES FISICAS

Diplomado en “Ecografía Morfológica General” Módulo VII

12

En el proceso de adquisición de imágenes, otros equipos pasaron a incorporar varios elementos piezoeléctricos compuestos a lo largo de una dirección dada, cada cual emitiendo pulsos y recibiendo estos ecos sucesivos en pocas facciones de segundo. De esta manera, en los transductores utilizados en los estudios en modo B, los elementos piezoeléctricos pueden ser ordenados espacialmente de forma linear (transductores lineares) o en una superficie curva (transductores convexos).

MODO M (MOVIMIENTO) Todavía hoy utilizamos en ecocardiografía el modo M de movimiento. Este método de reproducción de las imágenes permite el estudio del movimiento de las diferentes interfases reflectoras a lo largo de la dirección de propagación del pulso ultrasónico en un intervalo de tiempo extenso.

RESOLUCION Resolución consiste en la capacidad de un método de diferenciar entre dos fenómenos discretos. En el campo del diagnóstico por imágenes, la reproducción espacial representa el menor espacio entre dos puntos reconocibles como separados en una imagen. Normalmente, es utilizado el parámetro full width half máximum para determinar la resolución espacial. En la ultrasonografia, los siguientes tipos de resolución pueden ser definidos en los equipos:

1. Resolución espacial axial: capacidad de diferenciar dos puntos próximos a lo largo de la dirección de propagación del haz ultrasónico.

2. Resolución espacial lateral: capacidad de diferenciar dos puntos a lo largo de un eje de barrido del transductor.

3. Resolución de elevación: capacidad de diferenciar el eje perpendicular al plano de insonación.

4. Resolución temporal: número de cuadros por segundo obtenidos durante un exámen.

5. Resolución de contraste : capacidad de diferencias pequeñas variaciones de amplitud de señal en forma de tonos grises.

Page 13: BASES FISICAS

Diplomado en “Ecografía Morfológica General” Módulo VII

13

De modo ideal, se asemeja a la obtención del máximo de cualquiera de estas resoluciones, mientras que, como cada una de ellas está relacionada con la otra, el examinador deberá buscar acertar el mejor compromiso entre ellas.

Resolución espacial axial La resolución espacial axial, capacidad de diferenciar dos puntos próximos a lo largo de un eje de propagación del haz ultrasónico, depende de la duración de los pulsos de ultrasonido (período), sabiendo que los más cortos presentan mayor capacidad de discriminación de los reflectores. Fundamentalmente, la duración de los pulsos producidos depende tanto del tiempo de excitación de los elementos piezoeléctricos por pulsos eléctricos como de la eficiencia del material de amortiguación utilizado. Los sistemas ultrasonográficos generalmente utilizan pulsos cortos, con cerca de tres ciclos para la

codificación espacial y la construcción de la imagen. La utilización de frecuencias mayores (o sea, λ menores) permite la utilización de pulsos de igual número de ciclos, sin embargo, con menor duración, determinando imágenes con mejor resolución.

Resolución espacial lateral Corresponde a la capacidad de discriminación de dos puntos en el eje perpendicular al de la propagación del haz ultrasónico. La resolución espacial lateral es directamente proporcional a la frecuencia del transductor y al número de elementos piezoeléctricos en una misma área de contacto. Otros parámetros específicos de determinación de resolución lateral son los lóbulos laterales. Cuando un transductor es disparado produce un haz ultrasónico que está constituido de un lóbulo central (o lóbulo principal) y de lóbulos laterales. El lóbulo central lleva la mayor parte de energía acústica del campo ultrasónico, y los lóbulos laterales corresponden a otras áreas con alto valor de energía acústica, que también producen ecos. Elementos piezoeléctricos diferentes de aquellos que emitieron el pulso captan los ecos generados por los lóbulos laterales, dando origen a ambigüedades de localización espacial y degradando la imagen, sobretodo en relación a reflectores de alta intensidad. La caracterización de estos lóbulos pueden ser realizada a través de la translación de un reflector puntiforme a lo largo de un haz ultrasónico y midiéndose la amplitud de los ecos recibidos, produciéndose un perfil característico. De acuerdo con la profundidad, la frecuencia del transductor y la focalización del haz, los lóbulos laterales pueden ser mayores o menores en un mismo haz. Los lóbulos laterales muy intensos degradan la imagen, produciendo artefactos que simulan la presencia de fajas brillantes en regiones próximas a reflectores intensos. (Fig. 1-7)

Page 14: BASES FISICAS

Diplomado en “Ecografía Morfológica General” Módulo VII

14

La reducción del efecto de los lóbulos laterales puede ser obtenida por medio del ajuste de la frecuencia de insonación del transductor en equipos multifrecuencias, por la adecuación del foco del campo ultrasónico en equipos con orden de fase y por la utilización de los procesos electrónicos denominados “subdicación” y “apodización”. En el proceso de subdicación, la imagen es formada faja a faja a través de disparos sucesivos de pequeños grupos de elementos piezoeléctricos resultantes de la división de los grupos principales. A su vez, los subelementos que componen cada uno de estos pequeños grupos son disparados simultáneamente (Fig. 1-8). La apodización produce una reducción electrónica de los lóbulos laterales a través de la modulación de la intensidad de los pulsos eléctricos aplicados a los elementos piezoeléctricos, más intensos en el centro del grupo y menos intensos gradualmente en su periferia. El número de líneas componentes de la imagen también es un factor de control en la resolución lateral. Para una imagen típica pueden ser usadas 256 o 512 líneas verticales de imagen hasta un límite de tres líneas por anchura de onda de la frecuencia utilizada. Por encima de este valor, el aumento de líneas no tiene significado en la calidad de la imagen.

Resolución espacial de elevación La capacidad de discriminar dos puntos en un tercer eje espacial de orientación, perpendicular al plano e insonación, es el principal factor limitante de la calidad de la imagen ultrasonográfica (Fig. 1-9)

Page 15: BASES FISICAS

Diplomado en “Ecografía Morfológica General” Módulo VII

15

Como pudimos observar en las secciones anteriores, la resolución espacial en un plano de imagen axial vs. Lateral puede ser submilimétrica, de acuerdo con la frecuencia y el foco utilizados, el número de elementos piezoeléctricos y el número e líneas de composición de la imagen. La resolución espacial de elevación, a su vez, depende de otros factores de difícil caracterización técnica, tales como espesor del elemento piezoeléctrico en la dirección de la elevación, profundidad de la focalización y presencia de elementos dispersivos que funcionan como lentes acústicas en el trayecto de propagación el haz. La elevación es responsable de artefactos significativos cuando observamos estructuras menores que la espesura del haz en la región, determinando efectos de volumen parcial, como en la tomografía computarizada. Dos elementos presentes conjuntamente en esta misma posición en un plano de insonación, pero en posiciones diferentes a lo largo de un eje z, contribuirán simultáneamente para el mismo píxel de la imagen. Así, estructuras quísticas de contenido anecogénico pueden presentar artefactos de ecos en su interior debido al efecto de volumen parcial con sus paredes. Los equipos más recientes presentan tecnologías que no sólo permiten la reducción de los artefactos de elevación (elementos piezoeléctricos más finos y sistemas de focalización más eficientes), sino que también utilizan este efecto para la adquisición de imágenes volumétricas.

Resolución temporal Corresponde a la capacidad del sistema de producir el mayor número de cuadros en un mismo intervalo de tiempo, permitiendo el registro del movimiento de las estructuras en estudio con el máximo de fielidad. Las resolución temporal está limitada por una serie de factores, algunos de ellos manejables, otros intrínsecos al método. Como observamos en la sección de formación de imágenes, las líneas de barredura son formadas a partir de los ecos generados por las interfases a los largo de la trayectoria del haz ultrasónico. Como la velocidad del sonido está estimada en 1.540 m/s, para una profundidad

de 20 cm, una línea demora 26 μs. Así, para una imagen compuesta de 256 líneas tenemos 66 ms, con una frecuencia máxima de imágenes de 15 cuadros/segundo. En las situaciones clínicas del día a día, el compromiso entre resolución espacial y temporal es constantemente manejado por el utrasonografista, de manera de obtener imágenes de calidad diagnóstica.

Resolución de contraste La capacidad del equipo en discriminar pequeñas variaciones de amplitud de la señal en la forma de los tonos de grises depende de factores técnicos, tales como el perfil de energía del haz ultrasónico, el procesamiento analógico-digital, el dynamic range y el registro de bajos valores de amplitud señal.

Perfil de energía del haz ultrasónico Como ya discutimos en la sección de resolución espacial, el eje ultrasónico presenta un lóbulo principal (que presenta mayor concentración de energía acústica) y lóbulos laterales (que determinan una distribución más dispersa de energía a lo largo del área del transductor). Los lóbulos laterales son responsables tanto por la reducción de la resolución espacial lateral como por la degradación del contraste de imagen. Así es que reflexiones de pulsos obtenidos en los lóbulos laterales producen codificación espacial inadecuada y superposición de información de superficies reflectoras. Sin embargo, si las imágenes fueran reconstruidas sólo con la información obtenida del lóbulo central, tendríamos una imagen con buena resolución de espacio lateral, sin embargo, con poca contribución de los ecos de baja amplitud. Así, es preferible que los artefactos generados por los lóbulos laterales sean minimizados mediante la educción de la intensidad de los pulsos eléctricos aplicados a los elementos piezoeléctricos periféricos (apodización). Adicionalmente, la utilización de

Page 16: BASES FISICAS

Diplomado en “Ecografía Morfológica General” Módulo VII

16

una faja de recepción más sensible permite que los reflectores de baja amplitud también contribuyan a la representación adecuada de las estructuras de la imagen, permitiendo una mejor diferenciación entre las diferentes ecogenicidades.

Procesamiento analógico-digital Cada grupo de elementos piezoeléctricos necesita de un canal de procesamiento análogo-digital (A/D), capaz de convertir rápidamente la señal recibida. En la formación de la imagen ultrasonográfica, los valores de amplitud de señal será convertidos en un valor de luminosidad en una escala de grises. Esta distribución de valores corresponde al rango de amplitudes con que podemos operar nuestra escala siendo que, en aquellos equipos con alta capacidad de conversión análogo-digital, algunos de estos valores ueden estar situados en la faja de saturación, volviéndose indistinguibles entre sí. Mientras que las informaciones referentes a estos valores latentes de la imagen pueden ser rescatadas a través de la manipulación del rango dinámico (dynamic range) y de la escala de grises utilizados para la presentación de la imagen.

Dynamic range El dynamic range define cuales son los valores de amplitud de señal que participaron en la formación de la imagen ultrasonográfica, estableciendo la relación de contraste de modo análogo a la “ventana” utilizada en la tomografía computarizada. Así, es una adquisición que haya sido digitalizada con 256 tonos, los valores intermedios participarán en la escala de grises mientras que los valores extremos serán representados en blanco onegro.

IMAGEN Tamaño de Imagen La imagen modo B en tiempo real producida por un transductor es una matriz de puntos codificados a lo largo de la trayectoria de propagación del haz ultrasónico y a lo largo del eje perpendicular a éste. La localización espacial en el eje de propagación del haz es hecha según el tiempo de llegada del eco a que corresponde y en el otro eje por la línea de la cual forma parte, ya sea por ser obtenido en una posición específica de la oscilación del elemento piezoeléctrico en un transductor sensorial o por ser recibido por un elemento dado en un transductor linear. Los puntos codificados son denominados “pixeles” (de picture element). Cuando observamos una imagen ultrasonográfica estamos viendo una distribución espacial de las estructuras generadoras de eco a lo largo de la dirección de propagación del sonido y a lo largo de la dirección de barredura del haz ultrasónico. Como ya discutimos anteriormente, las características del haz ultrasónico, del medio y del procesamiento de la imagen definen la apariencia de los objetos en la ultrasonografía. Las estructuras que no generan ecos son denominadas anecogénicas, las que generan pocos ecos son hipoecogénicas y las estructuras que generan ecos intensos son hiperecogéncias. En general, estos términos son utilizados comparativamente entre dos órganos o entre una lesión y los tejidos adyacentes. Otras variables pueden ser utilizadas para el perfeccionamiento de las características de las imágenes, dentro de las cuales destacaremos:

Repulsión La repulsión (rejection) consiste en la capacidad del equipo en eliminar los ecos de baja amplitud indeseables en la formación de la imagen, permitiendo una mejor definición de las estructuras anecogénicas.

Page 17: BASES FISICAS

Diplomado en “Ecografía Morfológica General” Módulo VII

17

Softening Consiste en un tipo de filtro en el que los bordes de las diferentes estructuras son “suavizados”, es decir, hay una interpolación de datos entre las imágenes de dos estructuras adyacentes para reducir el efecto de borde entre ellas.

“Echo enhancement” o “ Edge enhancement” Consiste en otro tipo e filtro en el que la matriz de imagen es procesada de manera de realzar las diferencias de ecogenicidad entre las estructuras adyacentes, haciendo más conspicuas los bordes entre ellas.

Persistencia o media temporal La persistencia consiste en la influencia que un cuadro posee en la construcción de un cuadro sucesivo. Así, cuando una imagen es formada en la pantalla de un equipo, tenemos el patrón de refracción de los ecos asociado al patrón de difracción o emisión de los pequeños reflectores. Estos generan ecos que interactúan entre sí en un patrón de interferencia de fase, causando inomogenicidades en cada imagen formada (speckle). Aumentándose la persistencia de las imágenes e la pantalla, es decir, haciendo que cada imagen contribuya en un cierto porcentaje con su sucesora, eliminamos en parte el patrón de interferencia que será diferente para cada una de las imágenes individuales (despeckle)

Post-procesamiento en la escala de grises Define la variación de la escala de grises utilizada, permitiendo manipular cuales valores de amplitud estarán más o menos contrastados en la imagen. Así, una escala de grises linear representará cada valor de amplitud con un valor de grises, mientras que las curvas de la escala sigmoidea producirán un mayor contraste en los valores intermedios y valores comprimidos en los extremos de amplitud. Podemos manipular así las fajas de amplitud de interés de manera de realzar o minimizar el contraste en tonos grises específicos.

Page 18: BASES FISICAS

Diplomado en “Ecografía Morfológica General” Módulo VII

18

BIBLIOGRAFIA

1. Obstetrics and gynecology. (P. Callcen), 3th. ed., W.B. Saunders Co., cap. 31. 2. Fleischer, A., J. Daniell, J. Rodier, et al. (1981): Sonographic monitoring of ovarian follicular

development. J. Ultrasound. Med., 9:275. 3. Fleischer, A., y S. Entman (1996): Sonographic evaluation of pelvic masses with transabdominal

and/or transvaginal sonography. En Sonography in obstetrics and gynecology principles & practice. (A. Fleischer, F. Maning, P. Jeanty, R. Romero, eds.), 5th. ed., Appleton Lange, Stamford, Conneticut, cap. 38, pp. 767.

4. Fleischer, A., y S. Entman (1996): Sonographic evaluation of the uterus and related disorders. En Sonography in obstetrics and gynecology principles & practice. (A. Fleischer, F. Manning, P. Jeanty, R. Romero, eds.), 5th. ed., Appleton & Lange, Stamford, Conneticut, cap. 41, pp. 829.

5. Fleischer, A.C., W.H. Rodgers, B.K, Rad, et al. (1991): Assessment of ovarian tumor vascularity with transvaginal color Doppler sonography. J. Ultrasound. Med., 10:563.

6. Fleischer, A.C., W.H. Rodgers, B.K, Rad, et al. (1991): Transvaginal color Doppler sonography of ovarian masses with pathological correlation. Ultrasound. Obstet. Gynecol., 1:275.

7. García Frutos, A., M.A. Huertas, C. Uguet, et al. (1999): Sistematización de planos de la pelvis con sonda vaginal. Anatomía ecográfica en ultrasonografía ginecológica. Guía práctica. J.M. Bajo Arenas, Italformaco S.A., Madrid.

8. Goldstein, S.R. (1994): Use of ultrasonohisterography for triage of perimenopausal patients with unexplained uterine bleeding. Am. J. Obstet. Gynecol., 170:565.

9. Goldstein, SR. (1990): Incorporating endovaginal ultrasonography in the overall gynaecologic examinations. Am. J. Obstet. Gynecol., 162:625.

10. Grandberg, S., A. Norström, y M. Wikland (1990): Tumors in the lower pelvis as imaged by vaginal sonography. Gynecol. Oncol., 37:24.

11. Guerreiro, S., V. Mais, S. Ajossa, et al. (1995): The role of endovaginal ultrasound in differentiating endometriomas from others ovarian cysts. Clin. Exp. Obstet. Gynecol., 22:20.

12. Hamper, U.M., S. Sheth, F.M. Abbas, et al. (1993): Transvaginal color Doppler sonography of adnexal masses differences in blood flow impedance in benign and malignant lesions. AJR, 160:1225.